|
|
(30 intermediate revisions by 11 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{MOS intro}} |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-06 12:20:39 UTC</tt>.<br>
| |
| : The original revision id was <tt>565465745</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS is a tiling of sLLLL at the half octave.
| |
|
| |
|
| || 1\10 || || || || || || 120 || ||
| | == Scale properties == |
| || || || || || || 6\58 || 124.138 || ||
| | {{TAMNAMS use}} |
| || || || || || 5\48 || || 125 || ||
| |
| || || || || 4\38 || || || 126.316 || ||
| |
| || || || 3\28 || || || || 128.571 || ||
| |
| || || || || || || || 129.405 || ||
| |
| || || || || || 8\74 || || 129.730 || ||
| |
| || || || || || || 13\120 || 130 || Golden Biggie decatonic ||
| |
| || || || || 5\46 || || || 130.435 || ||
| |
| || || || || || || || 131.08 || ||
| |
| || || || || || 7\64 || || 131.25 || ||
| |
| || || 2\18 || || || || || 133.333 || Octokaidecal is around here ||
| |
| || || || || || 7\62 || || 135.484 || ||
| |
| || || || || 5\44 || || || 136.363 || ||
| |
| || || || || || || 13\114 || 136.842 || ||
| |
| || || || || || 8\70 || || 137.143 || ||
| |
| || || || || || || || 137.366 ||= <span style="display: block; text-align: center;">L/s = e</span> ||
| |
| || || || 3\26 || || || || 138.462 || ||
| |
| || || || || || || || 138.943 ||= <span style="display: block; text-align: center;">L/s = pi</span> ||
| |
| || || || || || 7\60 || || 140 || ||
| |
| || || || || 4\34 || || || 141.176 || ||
| |
| || || || || || 5\42 || || 142.857 || ||
| |
| || || || || || || 6\50 || 144 || ||
| |
| || 1\8 || || || || || || 150 || ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>8L 2s</title></head><body>This MOS is a tiling of sLLLL at the half octave.<br />
| |
| <br />
| |
|
| |
|
| | === Intervals === |
| | {{MOS intervals}} |
|
| |
|
| <table class="wiki_table">
| | === Generator chain === |
| <tr>
| | {{MOS genchain}} |
| <td>1\10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\58<br />
| |
| </td>
| |
| <td>124.138<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\48<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>125<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>126.316<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\28<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>128.571<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>129.405<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\74<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>129.730<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\120<br />
| |
| </td>
| |
| <td>130<br />
| |
| </td>
| |
| <td>Golden Biggie decatonic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>130.435<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>131.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\64<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>131.25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>2\18<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>133.333<br />
| |
| </td>
| |
| <td>Octokaidecal is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>135.484<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\44<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>136.363<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\114<br />
| |
| </td>
| |
| <td>136.842<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\70<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>137.143<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>137.366<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = e</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\26<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>138.462<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>138.943<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = pi</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\60<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>140<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\34<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>141.176<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\42<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>142.857<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\50<br />
| |
| </td>
| |
| <td>144<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1\8<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>150<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div> | | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 6/5 = [[Quadrasruta]] ({{nowrap|sagugu & bizozogu}}) |
| | | 13/8 = Golden taric (129.9254{{c}}) |
| | | 2/1 = [[Octokaidecal]] is around here |
| | | 7/2 = [[Fifives]]/[[crepuscular]] |
| | | 6/1 = [[Bisemidim]] |
| | }} |
| | |
| | {{stub}} |
| | [[Category:10-tone scales]] |
8L 2s, named taric in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 2 small steps, with a period of 4 large steps and 1 small step that repeats every 600.0 ¢, or twice every octave. Generators that produce this scale range from 120 ¢ to 150 ¢, or from 450 ¢ to 480 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 8L 2s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-tarastep
|
Perfect 0-tarastep
|
P0tas
|
0
|
0.0 ¢
|
1-tarastep
|
Diminished 1-tarastep
|
d1tas
|
s
|
0.0 ¢ to 120.0 ¢
|
Perfect 1-tarastep
|
P1tas
|
L
|
120.0 ¢ to 150.0 ¢
|
2-tarastep
|
Minor 2-tarastep
|
m2tas
|
L + s
|
150.0 ¢ to 240.0 ¢
|
Major 2-tarastep
|
M2tas
|
2L
|
240.0 ¢ to 300.0 ¢
|
3-tarastep
|
Minor 3-tarastep
|
m3tas
|
2L + s
|
300.0 ¢ to 360.0 ¢
|
Major 3-tarastep
|
M3tas
|
3L
|
360.0 ¢ to 450.0 ¢
|
4-tarastep
|
Perfect 4-tarastep
|
P4tas
|
3L + s
|
450.0 ¢ to 480.0 ¢
|
Augmented 4-tarastep
|
A4tas
|
4L
|
480.0 ¢ to 600.0 ¢
|
5-tarastep
|
Perfect 5-tarastep
|
P5tas
|
4L + s
|
600.0 ¢
|
6-tarastep
|
Diminished 6-tarastep
|
d6tas
|
4L + 2s
|
600.0 ¢ to 720.0 ¢
|
Perfect 6-tarastep
|
P6tas
|
5L + s
|
720.0 ¢ to 750.0 ¢
|
7-tarastep
|
Minor 7-tarastep
|
m7tas
|
5L + 2s
|
750.0 ¢ to 840.0 ¢
|
Major 7-tarastep
|
M7tas
|
6L + s
|
840.0 ¢ to 900.0 ¢
|
8-tarastep
|
Minor 8-tarastep
|
m8tas
|
6L + 2s
|
900.0 ¢ to 960.0 ¢
|
Major 8-tarastep
|
M8tas
|
7L + s
|
960.0 ¢ to 1050.0 ¢
|
9-tarastep
|
Perfect 9-tarastep
|
P9tas
|
7L + 2s
|
1050.0 ¢ to 1080.0 ¢
|
Augmented 9-tarastep
|
A9tas
|
8L + s
|
1080.0 ¢ to 1200.0 ¢
|
10-tarastep
|
Perfect 10-tarastep
|
P10tas
|
8L + 2s
|
1200.0 ¢
|
Generator chain
Generator chain of 8L 2s
Bright gens |
Scale degree |
Abbrev. |
Scale degree |
Abbrev.
|
8 |
Augmented 3-taradegree |
A3tad |
Augmented 8-taradegree |
A8tad
|
7 |
Augmented 2-taradegree |
A2tad |
Augmented 7-taradegree |
A7tad
|
6 |
Augmented 1-taradegree |
A1tad |
Augmented 6-taradegree |
A6tad
|
5 |
Augmented 0-taradegree |
A0tad |
Augmented 5-taradegree |
A5tad
|
4 |
Augmented 4-taradegree |
A4tad |
Augmented 9-taradegree |
A9tad
|
3 |
Major 3-taradegree |
M3tad |
Major 8-taradegree |
M8tad
|
2 |
Major 2-taradegree |
M2tad |
Major 7-taradegree |
M7tad
|
1 |
Perfect 1-taradegree |
P1tad |
Perfect 6-taradegree |
P6tad
|
0 |
Perfect 0-taradegree Perfect 5-taradegree |
P0tad P5tad |
Perfect 5-taradegree Perfect 10-taradegree |
P5tad P10tad
|
−1 |
Perfect 4-taradegree |
P4tad |
Perfect 9-taradegree |
P9tad
|
−2 |
Minor 3-taradegree |
m3tad |
Minor 8-taradegree |
m8tad
|
−3 |
Minor 2-taradegree |
m2tad |
Minor 7-taradegree |
m7tad
|
−4 |
Diminished 1-taradegree |
d1tad |
Diminished 6-taradegree |
d6tad
|
−5 |
Diminished 5-taradegree |
d5tad |
Diminished 10-taradegree |
d10tad
|
−6 |
Diminished 4-taradegree |
d4tad |
Diminished 9-taradegree |
d9tad
|
−7 |
Diminished 3-taradegree |
d3tad |
Diminished 8-taradegree |
d8tad
|
−8 |
Diminished 2-taradegree |
d2tad |
Diminished 7-taradegree |
d7tad
|
Modes
Scale degrees of the modes of 8L 2s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (taradegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
8|0(2)
|
1
|
LLLLsLLLLs
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Aug.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Aug.
|
Perf.
|
6|2(2)
|
2
|
LLLsLLLLsL
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
4|4(2)
|
3
|
LLsLLLLsLL
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
2|6(2)
|
4
|
LsLLLLsLLL
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
0|8(2)
|
5
|
sLLLLsLLLL
|
Perf.
|
Dim.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Dim.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 8L 2s
Generator(edo)
|
Cents
|
Step ratio
|
Comments(always proper)
|
Bright
|
Dark
|
L:s
|
Hardness
|
1\10
|
|
|
|
|
|
120.000
|
480.000
|
1:1
|
1.000
|
Equalized 8L 2s
|
|
|
|
|
|
6\58
|
124.138
|
475.862
|
6:5
|
1.200
|
Quadrasruta (sagugu & bizozogu)
|
|
|
|
|
5\48
|
|
125.000
|
475.000
|
5:4
|
1.250
|
|
|
|
|
|
|
9\86
|
125.581
|
474.419
|
9:7
|
1.286
|
|
|
|
|
4\38
|
|
|
126.316
|
473.684
|
4:3
|
1.333
|
Supersoft 8L 2s
|
|
|
|
|
|
11\104
|
126.923
|
473.077
|
11:8
|
1.375
|
|
|
|
|
|
7\66
|
|
127.273
|
472.727
|
7:5
|
1.400
|
|
|
|
|
|
|
10\94
|
127.660
|
472.340
|
10:7
|
1.429
|
|
|
|
3\28
|
|
|
|
128.571
|
471.429
|
3:2
|
1.500
|
Soft 8L 2s
|
|
|
|
|
|
11\102
|
129.412
|
470.588
|
11:7
|
1.571
|
|
|
|
|
|
8\74
|
|
129.730
|
470.270
|
8:5
|
1.600
|
|
|
|
|
|
|
13\120
|
130.000
|
470.000
|
13:8
|
1.625
|
Golden taric (129.9254 ¢)
|
|
|
|
5\46
|
|
|
130.435
|
469.565
|
5:3
|
1.667
|
Semisoft 8L 2s
|
|
|
|
|
|
12\110
|
130.909
|
469.091
|
12:7
|
1.714
|
|
|
|
|
|
7\64
|
|
131.250
|
468.750
|
7:4
|
1.750
|
|
|
|
|
|
|
9\82
|
131.707
|
468.293
|
9:5
|
1.800
|
|
|
2\18
|
|
|
|
|
133.333
|
466.667
|
2:1
|
2.000
|
Basic 8L 2s Octokaidecal is around here
|
|
|
|
|
|
9\80
|
135.000
|
465.000
|
9:4
|
2.250
|
|
|
|
|
|
7\62
|
|
135.484
|
464.516
|
7:3
|
2.333
|
|
|
|
|
|
|
12\106
|
135.849
|
464.151
|
12:5
|
2.400
|
|
|
|
|
5\44
|
|
|
136.364
|
463.636
|
5:2
|
2.500
|
Semihard 8L 2s
|
|
|
|
|
|
13\114
|
136.842
|
463.158
|
13:5
|
2.600
|
|
|
|
|
|
8\70
|
|
137.143
|
462.857
|
8:3
|
2.667
|
|
|
|
|
|
|
11\96
|
137.500
|
462.500
|
11:4
|
2.750
|
|
|
|
3\26
|
|
|
|
138.462
|
461.538
|
3:1
|
3.000
|
Hard 8L 2s
|
|
|
|
|
|
10\86
|
139.535
|
460.465
|
10:3
|
3.333
|
|
|
|
|
|
7\60
|
|
140.000
|
460.000
|
7:2
|
3.500
|
Fifives/crepuscular
|
|
|
|
|
|
11\94
|
140.426
|
459.574
|
11:3
|
3.667
|
|
|
|
|
4\34
|
|
|
141.176
|
458.824
|
4:1
|
4.000
|
Superhard 8L 2s
|
|
|
|
|
|
9\76
|
142.105
|
457.895
|
9:2
|
4.500
|
|
|
|
|
|
5\42
|
|
142.857
|
457.143
|
5:1
|
5.000
|
|
|
|
|
|
|
6\50
|
144.000
|
456.000
|
6:1
|
6.000
|
Bisemidim
|
1\8
|
|
|
|
|
|
150.000
|
450.000
|
1:0
|
→ ∞
|
Collapsed 8L 2s
|