289edo: Difference between revisions
Cleanup; links; categories; +prime error table |
m renamed sextilififths to sextilifourths |
||
(25 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
289edo is a strong 5-limit system with decent [[11-limit|11-]] and [[13-limit]] interpretations despite in[[consistency]] in the [[13-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] the [[schisma]], 32805/32768 in the [[5-limit]]; [[4375/4374]] and [[65625/65536]] in the [[7-limit]]; [[441/440]] and [[4000/3993]] in the 11-limit; and [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]] and [[2080/2079]] in the 13-limit. | |||
It is the [[optimal patent val]] for the [[13-limit]] rank-5 temperament tempering out 364/363, and the 13-limit [[history (temperament)|history]] temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for [[sextilifourths]], [[quintaschis]], and [[quincy]] in both the 11- and 13-limit. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|289}} | {{Harmonics in equal|289}} | ||
[[ | === Subsets and supersets === | ||
289 is 17 squared. In light of containing [[17edo]] as a subset, 289edo [[support]]s the [[chlorine]] temperament, which tempers out the [[septendecima]] {{monzo| -52 -17 34 }} and the ragisma 4375/4374. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -458 289 }} | |||
| {{mapping| 289 458 }} | |||
| +0.0709 | |||
| 0.0710 | |||
| 1.71 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, {{monzo| 7 41 -31 }} | |||
| {{mapping| 289 458 671 }} | |||
| +0.0695 | |||
| 0.0580 | |||
| 1.40 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 32805/32768, 235298/234375 | |||
| {{mapping| 289 458 671 811 }} | |||
| +0.1725 | |||
| 0.1854 | |||
| 4.46 | |||
|- | |||
| 2.3.5.7.11 | |||
| 441/440, 4000/3993, 4375/4374, 32805/32768 | |||
| {{mapping| 289 458 671 811 1000 }} | |||
| +0.0841 | |||
| 0.2423 | |||
| 5.83 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 364/363, 441/440, 676/675, 4375/4374, 19773/19712 | |||
| {{mapping| 289 458 671 811 1000 1069 }} | |||
| +0.1500 | |||
| 0.2657 | |||
| 6.40 | |||
|} | |||
* 289et has a lower absolute error in the 5-limit than any previous equal temperaments, past [[171edo|171]] and followed by [[323edo|323]]. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 4\289 | |||
| 16.61 | |||
| 100/99 | |||
| [[Quincy]] | |||
|- | |||
| 1 | |||
| 13\289 | |||
| 53.98 | |||
| 33/32 | |||
| [[Tridecafifths]] | |||
|- | |||
| 1 | |||
| 20\289 | |||
| 83.04 | |||
| 21/20 | |||
| [[Sextilifourths]] | |||
|- | |||
| 1 | |||
| 24\289 | |||
| 99.65 | |||
| 18/17 | |||
| [[Quintaschis]] | |||
|- | |||
| 1 | |||
| 76\289 | |||
| 315.57 | |||
| 6/5 | |||
| [[Acrokleismic]] | |||
|- | |||
| 1 | |||
| 86\289 | |||
| 357.09 | |||
| 768/625 | |||
| [[Dodifo]] | |||
|- | |||
| 1 | |||
| 108\289 | |||
| 448.44 | |||
| 35/27 | |||
| [[Semidimfourth]] | |||
|- | |||
| 1 | |||
| 120\289 | |||
| 498.27 | |||
| 4/3 | |||
| [[Pontiac]] | |||
|- | |||
| 1 | |||
| 135\289 | |||
| 560.55 | |||
| 864/625 | |||
| [[Whoosh]] | |||
|- | |||
| 17 | |||
| 93\289<br />(8\289) | |||
| 386.16<br />(33.22) | |||
| {{monzo| -23 5 9 -2 }}<br />(100352/98415) | |||
| [[Chlorine]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:History (temperament)]] | [[Category:History (temperament)]] | ||
[[Category: | [[Category:Minor minthmic]] | ||
[[Category:Quincy]] | |||
[[Category:Quintaschis]] | |||
[[Category:Sextilifourths]] |
Latest revision as of 20:49, 1 April 2025
← 288edo | 289edo | 290edo → |
289 equal divisions of the octave (abbreviated 289edo or 289ed2), also called 289-tone equal temperament (289tet) or 289 equal temperament (289et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 289 equal parts of about 4.15 ¢ each. Each step represents a frequency ratio of 21/289, or the 289th root of 2.
Theory
289edo is a strong 5-limit system with decent 11- and 13-limit interpretations despite inconsistency in the 13-odd-limit. As an equal temperament, it tempers out the schisma, 32805/32768 in the 5-limit; 4375/4374 and 65625/65536 in the 7-limit; 441/440 and 4000/3993 in the 11-limit; and 364/363, 676/675, 1001/1000, 1575/1573 and 2080/2079 in the 13-limit.
It is the optimal patent val for the 13-limit rank-5 temperament tempering out 364/363, and the 13-limit history temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for sextilifourths, quintaschis, and quincy in both the 11- and 13-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.22 | -0.15 | -1.35 | +0.93 | -1.77 | -1.15 | +1.45 | -1.28 | +0.18 | +0.99 |
Relative (%) | +0.0 | -5.4 | -3.7 | -32.6 | +22.4 | -42.7 | -27.7 | +34.9 | -30.9 | +4.3 | +23.7 | |
Steps (reduced) |
289 (0) |
458 (169) |
671 (93) |
811 (233) |
1000 (133) |
1069 (202) |
1181 (25) |
1228 (72) |
1307 (151) |
1404 (248) |
1432 (276) |
Subsets and supersets
289 is 17 squared. In light of containing 17edo as a subset, 289edo supports the chlorine temperament, which tempers out the septendecima [-52 -17 34⟩ and the ragisma 4375/4374.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-458 289⟩ | [⟨289 458]] | +0.0709 | 0.0710 | 1.71 |
2.3.5 | 32805/32768, [7 41 -31⟩ | [⟨289 458 671]] | +0.0695 | 0.0580 | 1.40 |
2.3.5.7 | 4375/4374, 32805/32768, 235298/234375 | [⟨289 458 671 811]] | +0.1725 | 0.1854 | 4.46 |
2.3.5.7.11 | 441/440, 4000/3993, 4375/4374, 32805/32768 | [⟨289 458 671 811 1000]] | +0.0841 | 0.2423 | 5.83 |
2.3.5.7.11.13 | 364/363, 441/440, 676/675, 4375/4374, 19773/19712 | [⟨289 458 671 811 1000 1069]] | +0.1500 | 0.2657 | 6.40 |
- 289et has a lower absolute error in the 5-limit than any previous equal temperaments, past 171 and followed by 323.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 4\289 | 16.61 | 100/99 | Quincy |
1 | 13\289 | 53.98 | 33/32 | Tridecafifths |
1 | 20\289 | 83.04 | 21/20 | Sextilifourths |
1 | 24\289 | 99.65 | 18/17 | Quintaschis |
1 | 76\289 | 315.57 | 6/5 | Acrokleismic |
1 | 86\289 | 357.09 | 768/625 | Dodifo |
1 | 108\289 | 448.44 | 35/27 | Semidimfourth |
1 | 120\289 | 498.27 | 4/3 | Pontiac |
1 | 135\289 | 560.55 | 864/625 | Whoosh |
17 | 93\289 (8\289) |
386.16 (33.22) |
[-23 5 9 -2⟩ (100352/98415) |
Chlorine |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct