84edt: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''Division of the third harmonic into 84 equal parts''' (84edt) is practically identical to 53 edo, but with the 3/1 rather than the 2/1 being just. The oct..." Tags: Mobile edit Mobile web edit |
m →See also: +9ed9/8 |
||
(10 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
[[ | == Theory == | ||
[[ | 84edt is practically identical to [[53edo]], but with the 3/1 rather than the [[2/1]] being just. The octave is about 0.0430 cents stretched. Like 53edo, 84edt is [[consistent]] to the [[integer limit|10-integer-limit]]. | ||
=== Harmonics === | |||
{{Harmonics in equal|84|3|1|intervals=integer}} | |||
{{Harmonics in equal|84|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 84edt (continued)}} | |||
=== Subsets and supersets === | |||
84 is a [[largely composite]] number. Since it factors into primes as {{nowrap| 2<sup>2</sup> × 3 × 7 }}, 84edt has subset edts {{EDs|equave=t| 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 }}. | |||
== Intervals == | |||
{{Interval table}} | |||
== See also == | |||
* [[9ed9/8]] – relative ed9/8 | |||
* [[31edf]] – relative edf | |||
* [[53edo]] – relative edo | |||
* [[137ed6]] – relative ed6 |
Latest revision as of 10:58, 24 March 2025
← 83edt | 84edt | 85edt → |
(convergent)
84 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 84edt or 84ed3), is a nonoctave tuning system that divides the interval of 3/1 into 84 equal parts of about 22.6 ¢ each. Each step represents a frequency ratio of 31/84, or the 84th root of 3.
Theory
84edt is practically identical to 53edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.0430 cents stretched. Like 53edo, 84edt is consistent to the 10-integer-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.04 | +0.00 | +0.09 | -1.31 | +0.04 | +4.88 | +0.13 | +0.00 | -1.27 | -7.77 | +0.09 |
Relative (%) | +0.2 | +0.0 | +0.4 | -5.8 | +0.2 | +21.6 | +0.6 | +0.0 | -5.6 | -34.3 | +0.4 | |
Steps (reduced) |
53 (53) |
84 (0) |
106 (22) |
123 (39) |
137 (53) |
149 (65) |
159 (75) |
168 (0) |
176 (8) |
183 (15) |
190 (22) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +4.92 | -1.31 | +0.17 | +8.43 | +0.04 | -2.99 | -1.22 | +4.88 | -7.73 | +5.88 | +0.13 |
Relative (%) | -11.6 | +21.7 | -5.8 | +0.8 | +37.2 | +0.2 | -13.2 | -5.4 | +21.6 | -34.1 | +26.0 | +0.6 | |
Steps (reduced) |
196 (28) |
202 (34) |
207 (39) |
212 (44) |
217 (49) |
221 (53) |
225 (57) |
229 (61) |
233 (65) |
236 (68) |
240 (72) |
243 (75) |
Subsets and supersets
84 is a largely composite number. Since it factors into primes as 22 × 3 × 7, 84edt has subset edts 2, 3, 4, 6, 7, 12, 14, 21, 28, 42.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 22.6 | 15.5 | |
2 | 45.3 | 31 | 37/36, 38/37, 39/38, 40/39, 41/40 |
3 | 67.9 | 46.4 | 25/24, 26/25, 27/26 |
4 | 90.6 | 61.9 | 19/18, 20/19, 39/37 |
5 | 113.2 | 77.4 | 16/15 |
6 | 135.9 | 92.9 | 13/12, 27/25, 40/37 |
7 | 158.5 | 108.3 | 23/21, 34/31 |
8 | 181.1 | 123.8 | 10/9 |
9 | 203.8 | 139.3 | 9/8 |
10 | 226.4 | 154.8 | 33/29, 41/36 |
11 | 249.1 | 170.2 | 15/13, 37/32 |
12 | 271.7 | 185.7 | 41/35 |
13 | 294.4 | 201.2 | 32/27 |
14 | 317 | 216.7 | 6/5 |
15 | 339.6 | 232.1 | 28/23, 39/32 |
16 | 362.3 | 247.6 | 16/13, 37/30 |
17 | 384.9 | 263.1 | 5/4 |
18 | 407.6 | 278.6 | 19/15 |
19 | 430.2 | 294 | 32/25, 41/32 |
20 | 452.8 | 309.5 | 13/10 |
21 | 475.5 | 325 | 25/19, 29/22 |
22 | 498.1 | 340.5 | 4/3 |
23 | 520.8 | 356 | 23/17, 27/20 |
24 | 543.4 | 371.4 | 26/19, 37/27, 41/30 |
25 | 566.1 | 386.9 | 18/13, 25/18 |
26 | 588.7 | 402.4 | 38/27 |
27 | 611.3 | 417.9 | 27/19, 37/26 |
28 | 634 | 433.3 | 13/9, 36/25 |
29 | 656.6 | 448.8 | 19/13 |
30 | 679.3 | 464.3 | 34/23, 37/25, 40/27 |
31 | 701.9 | 479.8 | 3/2 |
32 | 724.6 | 495.2 | 35/23, 38/25, 41/27 |
33 | 747.2 | 510.7 | 20/13, 37/24 |
34 | 769.8 | 526.2 | 25/16, 39/25 |
35 | 792.5 | 541.7 | 30/19 |
36 | 815.1 | 557.1 | 8/5 |
37 | 837.8 | 572.6 | 13/8 |
38 | 860.4 | 588.1 | 23/14 |
39 | 883.1 | 603.6 | 5/3 |
40 | 905.7 | 619 | 27/16 |
41 | 928.3 | 634.5 | 41/24 |
42 | 951 | 650 | 26/15 |
43 | 973.6 | 665.5 | |
44 | 996.3 | 681 | 16/9 |
45 | 1018.9 | 696.4 | 9/5 |
46 | 1041.5 | 711.9 | 31/17 |
47 | 1064.2 | 727.4 | 24/13, 37/20 |
48 | 1086.8 | 742.9 | 15/8 |
49 | 1109.5 | 758.3 | 19/10 |
50 | 1132.1 | 773.8 | 25/13 |
51 | 1154.8 | 789.3 | 37/19, 39/20 |
52 | 1177.4 | 804.8 | |
53 | 1200 | 820.2 | 2/1 |
54 | 1222.7 | 835.7 | |
55 | 1245.3 | 851.2 | 37/18, 39/19, 41/20 |
56 | 1268 | 866.7 | 25/12, 27/13 |
57 | 1290.6 | 882.1 | 19/9, 40/19 |
58 | 1313.3 | 897.6 | 32/15 |
59 | 1335.9 | 913.1 | 13/6 |
60 | 1358.5 | 928.6 | |
61 | 1381.2 | 944 | 20/9 |
62 | 1403.8 | 959.5 | 9/4 |
63 | 1426.5 | 975 | 41/18 |
64 | 1449.1 | 990.5 | 30/13, 37/16 |
65 | 1471.8 | 1006 | |
66 | 1494.4 | 1021.4 | |
67 | 1517 | 1036.9 | 12/5 |
68 | 1539.7 | 1052.4 | 39/16 |
69 | 1562.3 | 1067.9 | 32/13, 37/15 |
70 | 1585 | 1083.3 | 5/2 |
71 | 1607.6 | 1098.8 | 38/15 |
72 | 1630.2 | 1114.3 | 41/16 |
73 | 1652.9 | 1129.8 | 13/5 |
74 | 1675.5 | 1145.2 | 29/11 |
75 | 1698.2 | 1160.7 | 8/3 |
76 | 1720.8 | 1176.2 | 27/10 |
77 | 1743.5 | 1191.7 | 41/15 |
78 | 1766.1 | 1207.1 | 25/9, 36/13 |
79 | 1788.7 | 1222.6 | |
80 | 1811.4 | 1238.1 | 37/13 |
81 | 1834 | 1253.6 | 26/9 |
82 | 1856.7 | 1269 | 38/13 |
83 | 1879.3 | 1284.5 | |
84 | 1902 | 1300 | 3/1 |