335edo: Difference between revisions
m changed EDO intro to ED intro |
m Cleanup and update |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
335edo only is [[consistent]] to the [[5-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] {{monzo| 8 14 -13 }} ([[parakleisma]]) and {{monzo| 39 -29 3 }} ([[ | 335edo only is [[consistent]] to the [[5-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] {{monzo| 8 14 -13 }} ([[parakleisma]]) and {{monzo| 39 -29 3 }} ([[alphatricot comma]]), and is a quite efficient [[5-limit]] system. | ||
The 335d [[val]] ({{val| 335 531 778 '''941''' 1159 1240 }}), which scores the best, tempers out [[6144/6125]], [[16875/16807]] and [[14348907/14336000]] in the 7-limit; [[540/539]], 1375/1372, [[3025/3024]], [[5632/5625]] in the 11-limit; and [[729/728]], [[2080/2079]], [[2200/2197]], and [[6656/6655]] in the 13-limit. It [[support]]s [[grendel]]. | The 335d [[val]] ({{val| 335 531 778 '''941''' 1159 1240 }}), which scores the best, tempers out [[6144/6125]], [[16875/16807]] and [[14348907/14336000]] in the [[7-limit]]; [[540/539]], [[1375/1372]], [[3025/3024]], [[5632/5625]] in the [[11-limit]]; and [[729/728]], [[2080/2079]], [[2200/2197]], and [[6656/6655]] in the [[13-limit]]. It [[support]]s [[grendel]]. | ||
The [[patent val]] {{val| 335 531 778 940 }} tempers out the [[3136/3125]] and [[4375/4374]] and in the 7-limit, supporting septimal [[parakleismic]]. This extension tempers out [[441/440]], 5632/5625, and [[19712/19683]] in the 11-limit. The 13-limit version of this, {{val| 335 531 778 940 1159 1240 }}, tempers out [[847/845]], [[1001/1000]], [[1575/1573]], 2200/2197, [[4096/4095]], [[6656/6655]], and [[10648/10647]]. Another 13-limit extension is {{val| 335 531 778 940 1159 '''1239''' }} (335f), where it adds [[364/363]] and 2080/2079 to the comma list. | The [[patent val]] {{val| 335 531 778 940 }} tempers out the [[3136/3125]] and [[4375/4374]] and in the 7-limit, supporting septimal [[parakleismic]]. This extension tempers out [[441/440]], 5632/5625, and [[19712/19683]] in the 11-limit. The 13-limit version of this, {{val| 335 531 778 940 1159 1240 }}, tempers out [[847/845]], [[1001/1000]], [[1575/1573]], 2200/2197, [[4096/4095]], [[6656/6655]], and [[10648/10647]]. Another 13-limit extension is {{val| 335 531 778 940 1159 '''1239''' }} (335f), where it adds [[364/363]] and 2080/2079 to the comma list. | ||
Line 13: | Line 13: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 335 factors into 5 × 67, 335edo has [[5edo]] and [[67edo]] as its subsets. [[670edo]], which doubles it, gives a good correction to the harmonic 7. | Since 335 factors into primes as {{nowrap| 5 × 67 }}, 335edo has [[5edo]] and [[67edo]] as its subsets. [[670edo]], which doubles it, gives a good correction to the harmonic 7. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
Line 21: | Line 21: | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 28: | Line 28: | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{ | | {{Monzo| 531 -335 }} | ||
| {{ | | {{Mapping| 335 531 }} | ||
| −0.0424 | | −0.0424 | ||
| 0.0424 | | 0.0424 | ||
Line 35: | Line 35: | ||
|- | |- | ||
| 2.3.5 | | 2.3.5 | ||
| {{ | | {{Monzo| 8 14 -13 }}, {{monzo| 47 -15 -10 }} | ||
| {{ | | {{Mapping| 335 531 778 }} | ||
| −0.1075 | | −0.1075 | ||
| 0.0984 | | 0.0984 | ||
Line 46: | Line 46: | ||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
|- | |- | ||
! Periods<br | ! Periods<br>per 8ve | ||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br | ! Associated<br>ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 68: | Line 68: | ||
| 565.97 | | 565.97 | ||
| 81920/59049 | | 81920/59049 | ||
| [[ | | [[Alphatrident]] (335d)<br>[[Alphatrillium]] / pseudotrillium (335) | ||
|- | |- | ||
| 5 | | 5 | ||
| 103\335<br | | 103\335<br>(31\335) | ||
| 368.96<br | | 368.96<br>(111.04) | ||
| 99/80<br | | 99/80<br>(16/15) | ||
| [[Quintosec]] | | [[Quintosec]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[ | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct |
Latest revision as of 15:19, 16 March 2025
← 334edo | 335edo | 336edo → |
335 equal divisions of the octave (abbreviated 335edo or 335ed2), also called 335-tone equal temperament (335tet) or 335 equal temperament (335et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 335 equal parts of about 3.58 ¢ each. Each step represents a frequency ratio of 21/335, or the 335th root of 2.
Theory
335edo only is consistent to the 5-odd-limit. As an equal temperament, it tempers out [8 14 -13⟩ (parakleisma) and [39 -29 3⟩ (alphatricot comma), and is a quite efficient 5-limit system.
The 335d val (⟨335 531 778 941 1159 1240]), which scores the best, tempers out 6144/6125, 16875/16807 and 14348907/14336000 in the 7-limit; 540/539, 1375/1372, 3025/3024, 5632/5625 in the 11-limit; and 729/728, 2080/2079, 2200/2197, and 6656/6655 in the 13-limit. It supports grendel.
The patent val ⟨335 531 778 940] tempers out the 3136/3125 and 4375/4374 and in the 7-limit, supporting septimal parakleismic. This extension tempers out 441/440, 5632/5625, and 19712/19683 in the 11-limit. The 13-limit version of this, ⟨335 531 778 940 1159 1240], tempers out 847/845, 1001/1000, 1575/1573, 2200/2197, 4096/4095, 6656/6655, and 10648/10647. Another 13-limit extension is ⟨335 531 778 940 1159 1239] (335f), where it adds 364/363 and 2080/2079 to the comma list.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.13 | +0.55 | -1.66 | +0.32 | +1.26 | -1.07 | -0.20 | -1.41 | -1.52 | +1.23 |
Relative (%) | +0.0 | +3.8 | +15.4 | -46.4 | +9.0 | +35.3 | -30.0 | -5.6 | -39.3 | -42.4 | +34.4 | |
Steps (reduced) |
335 (0) |
531 (196) |
778 (108) |
940 (270) |
1159 (154) |
1240 (235) |
1369 (29) |
1423 (83) |
1515 (175) |
1627 (287) |
1660 (320) |
Subsets and supersets
Since 335 factors into primes as 5 × 67, 335edo has 5edo and 67edo as its subsets. 670edo, which doubles it, gives a good correction to the harmonic 7.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [531 -335⟩ | [⟨335 531]] | −0.0424 | 0.0424 | 1.18 |
2.3.5 | [8 14 -13⟩, [47 -15 -10⟩ | [⟨335 531 778]] | −0.1075 | 0.0984 | 2.75 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 88\335 | 315.22 | 6/5 | Parakleismic (335) |
1 | 108\335 | 386.87 | 5/4 | Counterwürschmidt |
1 | 158\335 | 565.97 | 81920/59049 | Alphatrident (335d) Alphatrillium / pseudotrillium (335) |
5 | 103\335 (31\335) |
368.96 (111.04) |
99/80 (16/15) |
Quintosec |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct