|
|
(12 intermediate revisions by 7 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-10-28 15:57:30 UTC</tt>.<br>
| | | Periods = 1 |
| : The original revision id was <tt>564248587</tt>.<br>
| | | nLargeSteps = 10 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 11 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 2 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 1 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This is the MOS which splits its large steps 1-1-1-1-1-1-1-1-1-2 between its small steps. It is the simplest MOS which is really useful for Miracle temperament, placing the low estimate for the boundary of "practicality" at 41edo (L:s = 3:1). Its diatonic semitone generator is no smaller than 2/21edo (114.286 cents).
| | | Pattern = sLsLsLsLsLsLsLsLsLsLs |
| || 1/10 || || || || || 120 || | | }} |
| || || || || || 6/61 || 118.033 || | | {{MOS intro|Other Names=miracloid}} |
| || || || || 5/51 || || 117.647 ||
| |
| || || || || || 9/92 || 117.391 ||
| |
| || || || || || || 117.171 ||
| |
| || || || 4/41 || || || 117.073 ||
| |
| || || || || || || 116.857 ||
| |
| || || || || || 11/113 || 116.814 ||
| |
| || || || || || || 116.7725 ||
| |
| || || || || 7/72 || || 116.667 ||
| |
| || || || || || 10/103 || 116.505 ||
| |
| || || 3/31 || || || || 116.192 || | |
| || || || || || 11/114 || 115.7895 ||
| |
| || || || || 8/83 || || 115.663 || | |
| || || || || || || 115.585 ||
| |
| || || || || || 13/135 || 115.556 ||
| |
| || || || 5/52 || || || 115.385 ||
| |
| || || || || || 12/125 || 115.2 ||
| |
| || || || || 7/73 || || 115.0865 || | |
| || || || || || 9/94 || 114.894 || | |
| || 2/21 || || || || || 114.286 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>10L 11s</title></head><body>This is the MOS which splits its large steps 1-1-1-1-1-1-1-1-1-2 between its small steps. It is the simplest MOS which is really useful for Miracle temperament, placing the low estimate for the boundary of &quot;practicality&quot; at 41edo (L:s = 3:1). Its diatonic semitone generator is no smaller than 2/21edo (114.286 cents).<br />
| |
|
| |
|
| | This is the simplest MOS for which [[miracle]] temperament can be used{{Clarify}}, placing the low estimate for the boundary of "practicality" at 41edo (L:s = 3:1). |
| | [[User:Eliora|Eliora]] has proposed the name ''miracloid'' for this pattern. |
|
| |
|
| <table class="wiki_table">
| | == Intervals == |
| <tr>
| | {{MOS intervals}} |
| <td>1/10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6/61<br />
| |
| </td>
| |
| <td>118.033<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/51<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>117.647<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/92<br />
| |
| </td>
| |
| <td>117.391<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>117.171<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>117.073<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.857<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/113<br />
| |
| </td>
| |
| <td>116.814<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.7725<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.667<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10/103<br />
| |
| </td>
| |
| <td>116.505<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>3/31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.192<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/114<br />
| |
| </td>
| |
| <td>115.7895<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/83<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>115.663<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>115.585<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/135<br />
| |
| </td>
| |
| <td>115.556<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/52<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>115.385<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12/125<br />
| |
| </td>
| |
| <td>115.2<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/73<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>115.0865<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/94<br />
| |
| </td>
| |
| <td>114.894<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2/21<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>114.286<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 3/2 = Approximate range for using [[31/29]] as a generator |
| | | 2/1 = Approximate range for using [[46/43]] as a generator |
| | }} |
10L 11s, also called miracloid, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 11 small steps, repeating every octave. 10L 11s is a grandchild scale of 1L 9s, expanding it by 11 tones. Generators that produce this scale range from 114.3 ¢ to 120 ¢, or from 1080 ¢ to 1085.7 ¢.
This is the simplest MOS for which miracle temperament can be used[clarification needed], placing the low estimate for the boundary of "practicality" at 41edo (L:s = 3:1).
Eliora has proposed the name miracloid for this pattern.
Intervals
Intervals of 10L 11s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 57.1 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
57.1 ¢ to 120.0 ¢
|
2-mosstep
|
Diminished 2-mosstep
|
d2ms
|
2s
|
0.0 ¢ to 114.3 ¢
|
Perfect 2-mosstep
|
P2ms
|
L + s
|
114.3 ¢ to 120.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
L + 2s
|
120.0 ¢ to 171.4 ¢
|
Major 3-mosstep
|
M3ms
|
2L + s
|
171.4 ¢ to 240.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
L + 3s
|
120.0 ¢ to 228.6 ¢
|
Major 4-mosstep
|
M4ms
|
2L + 2s
|
228.6 ¢ to 240.0 ¢
|
5-mosstep
|
Minor 5-mosstep
|
m5ms
|
2L + 3s
|
240.0 ¢ to 285.7 ¢
|
Major 5-mosstep
|
M5ms
|
3L + 2s
|
285.7 ¢ to 360.0 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
2L + 4s
|
240.0 ¢ to 342.9 ¢
|
Major 6-mosstep
|
M6ms
|
3L + 3s
|
342.9 ¢ to 360.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
3L + 4s
|
360.0 ¢ to 400.0 ¢
|
Major 7-mosstep
|
M7ms
|
4L + 3s
|
400.0 ¢ to 480.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
3L + 5s
|
360.0 ¢ to 457.1 ¢
|
Major 8-mosstep
|
M8ms
|
4L + 4s
|
457.1 ¢ to 480.0 ¢
|
9-mosstep
|
Minor 9-mosstep
|
m9ms
|
4L + 5s
|
480.0 ¢ to 514.3 ¢
|
Major 9-mosstep
|
M9ms
|
5L + 4s
|
514.3 ¢ to 600.0 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
4L + 6s
|
480.0 ¢ to 571.4 ¢
|
Major 10-mosstep
|
M10ms
|
5L + 5s
|
571.4 ¢ to 600.0 ¢
|
11-mosstep
|
Minor 11-mosstep
|
m11ms
|
5L + 6s
|
600.0 ¢ to 628.6 ¢
|
Major 11-mosstep
|
M11ms
|
6L + 5s
|
628.6 ¢ to 720.0 ¢
|
12-mosstep
|
Minor 12-mosstep
|
m12ms
|
5L + 7s
|
600.0 ¢ to 685.7 ¢
|
Major 12-mosstep
|
M12ms
|
6L + 6s
|
685.7 ¢ to 720.0 ¢
|
13-mosstep
|
Minor 13-mosstep
|
m13ms
|
6L + 7s
|
720.0 ¢ to 742.9 ¢
|
Major 13-mosstep
|
M13ms
|
7L + 6s
|
742.9 ¢ to 840.0 ¢
|
14-mosstep
|
Minor 14-mosstep
|
m14ms
|
6L + 8s
|
720.0 ¢ to 800.0 ¢
|
Major 14-mosstep
|
M14ms
|
7L + 7s
|
800.0 ¢ to 840.0 ¢
|
15-mosstep
|
Minor 15-mosstep
|
m15ms
|
7L + 8s
|
840.0 ¢ to 857.1 ¢
|
Major 15-mosstep
|
M15ms
|
8L + 7s
|
857.1 ¢ to 960.0 ¢
|
16-mosstep
|
Minor 16-mosstep
|
m16ms
|
7L + 9s
|
840.0 ¢ to 914.3 ¢
|
Major 16-mosstep
|
M16ms
|
8L + 8s
|
914.3 ¢ to 960.0 ¢
|
17-mosstep
|
Minor 17-mosstep
|
m17ms
|
8L + 9s
|
960.0 ¢ to 971.4 ¢
|
Major 17-mosstep
|
M17ms
|
9L + 8s
|
971.4 ¢ to 1080.0 ¢
|
18-mosstep
|
Minor 18-mosstep
|
m18ms
|
8L + 10s
|
960.0 ¢ to 1028.6 ¢
|
Major 18-mosstep
|
M18ms
|
9L + 9s
|
1028.6 ¢ to 1080.0 ¢
|
19-mosstep
|
Perfect 19-mosstep
|
P19ms
|
9L + 10s
|
1080.0 ¢ to 1085.7 ¢
|
Augmented 19-mosstep
|
A19ms
|
10L + 9s
|
1085.7 ¢ to 1200.0 ¢
|
20-mosstep
|
Minor 20-mosstep
|
m20ms
|
9L + 11s
|
1080.0 ¢ to 1142.9 ¢
|
Major 20-mosstep
|
M20ms
|
10L + 10s
|
1142.9 ¢ to 1200.0 ¢
|
21-mosstep
|
Perfect 21-mosstep
|
P21ms
|
10L + 11s
|
1200.0 ¢
|
Scale tree
Scale tree and tuning spectrum of 10L 11s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
2\21
|
|
|
|
|
|
114.286
|
1085.714
|
1:1
|
1.000
|
Equalized 10L 11s
|
|
|
|
|
|
11\115
|
114.783
|
1085.217
|
6:5
|
1.200
|
|
|
|
|
|
9\94
|
|
114.894
|
1085.106
|
5:4
|
1.250
|
|
|
|
|
|
|
16\167
|
114.970
|
1085.030
|
9:7
|
1.286
|
|
|
|
|
7\73
|
|
|
115.068
|
1084.932
|
4:3
|
1.333
|
Supersoft 10L 11s
|
|
|
|
|
|
19\198
|
115.152
|
1084.848
|
11:8
|
1.375
|
|
|
|
|
|
12\125
|
|
115.200
|
1084.800
|
7:5
|
1.400
|
|
|
|
|
|
|
17\177
|
115.254
|
1084.746
|
10:7
|
1.429
|
|
|
|
5\52
|
|
|
|
115.385
|
1084.615
|
3:2
|
1.500
|
Soft 10L 11s Approximate range for using 31/29 as a generator
|
|
|
|
|
|
18\187
|
115.508
|
1084.492
|
11:7
|
1.571
|
|
|
|
|
|
13\135
|
|
115.556
|
1084.444
|
8:5
|
1.600
|
|
|
|
|
|
|
21\218
|
115.596
|
1084.404
|
13:8
|
1.625
|
|
|
|
|
8\83
|
|
|
115.663
|
1084.337
|
5:3
|
1.667
|
Semisoft 10L 11s
|
|
|
|
|
|
19\197
|
115.736
|
1084.264
|
12:7
|
1.714
|
|
|
|
|
|
11\114
|
|
115.789
|
1084.211
|
7:4
|
1.750
|
|
|
|
|
|
|
14\145
|
115.862
|
1084.138
|
9:5
|
1.800
|
|
|
3\31
|
|
|
|
|
116.129
|
1083.871
|
2:1
|
2.000
|
Basic 10L 11s Scales with tunings softer than this are proper Approximate range for using 46/43 as a generator
|
|
|
|
|
|
13\134
|
116.418
|
1083.582
|
9:4
|
2.250
|
|
|
|
|
|
10\103
|
|
116.505
|
1083.495
|
7:3
|
2.333
|
|
|
|
|
|
|
17\175
|
116.571
|
1083.429
|
12:5
|
2.400
|
|
|
|
|
7\72
|
|
|
116.667
|
1083.333
|
5:2
|
2.500
|
Semihard 10L 11s
|
|
|
|
|
|
18\185
|
116.757
|
1083.243
|
13:5
|
2.600
|
|
|
|
|
|
11\113
|
|
116.814
|
1083.186
|
8:3
|
2.667
|
|
|
|
|
|
|
15\154
|
116.883
|
1083.117
|
11:4
|
2.750
|
|
|
|
4\41
|
|
|
|
117.073
|
1082.927
|
3:1
|
3.000
|
Hard 10L 11s
|
|
|
|
|
|
13\133
|
117.293
|
1082.707
|
10:3
|
3.333
|
|
|
|
|
|
9\92
|
|
117.391
|
1082.609
|
7:2
|
3.500
|
|
|
|
|
|
|
14\143
|
117.483
|
1082.517
|
11:3
|
3.667
|
|
|
|
|
5\51
|
|
|
117.647
|
1082.353
|
4:1
|
4.000
|
Superhard 10L 11s
|
|
|
|
|
|
11\112
|
117.857
|
1082.143
|
9:2
|
4.500
|
|
|
|
|
|
6\61
|
|
118.033
|
1081.967
|
5:1
|
5.000
|
|
|
|
|
|
|
7\71
|
118.310
|
1081.690
|
6:1
|
6.000
|
|
1\10
|
|
|
|
|
|
120.000
|
1080.000
|
1:0
|
→ ∞
|
Collapsed 10L 11s
|