19-odd-limit: Difference between revisions
Jump to navigation
Jump to search
Created page with "This is a list of 19-odd-limit intervals. Also see 19-limit. <ul><li>18/17, 17/9</li><li>17/16, 32/17</li><li>16/15, 15/8</li><li>15/14, [..." |
No edit summary Tags: Mobile edit Mobile web edit |
||
(17 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
{{odd-limit navigation}} | |||
{{odd-limit intro|19}} | |||
* [[1/1]] | |||
* '''[[20/19]], [[19/10]]''' | |||
* '''[[19/18]], [[36/19]]''' | |||
* [[18/17]], [[17/9]] | |||
* [[17/16]], [[32/17]] | |||
* [[16/15]], [[15/8]] | |||
* [[15/14]], [[28/15]] | |||
* [[14/13]], [[13/7]] | |||
* [[13/12]], [[24/13]] | |||
* [[12/11]], [[11/6]] | |||
* [[11/10]], [[20/11]] | |||
* [[10/9]], [[9/5]] | |||
* '''[[19/17]], [[34/19]]''' | |||
* [[9/8]], [[16/9]] | |||
* [[17/15]], [[30/17]] | |||
* [[8/7]], [[7/4]] | |||
* [[15/13]], [[26/15]] | |||
* '''[[22/19]], [[19/11]]''' | |||
* [[7/6]], [[12/7]] | |||
* [[20/17]], [[17/10]] | |||
* [[13/11]], [[22/13]] | |||
* '''[[19/16]], [[32/19]]''' | |||
* [[6/5]], [[5/3]] | |||
* [[17/14]], [[28/17]] | |||
* [[11/9]], [[18/11]] | |||
* [[16/13]], [[13/8]] | |||
* [[5/4]], [[8/5]] | |||
* '''[[24/19]], [[19/12]]''' | |||
* '''[[19/15]], [[30/19]]''' | |||
* [[14/11]], [[11/7]] | |||
* [[9/7]], [[14/9]] | |||
* [[22/17]], [[17/11]] | |||
* [[13/10]], [[20/13]] | |||
* [[17/13]], [[26/17]] | |||
* [[4/3]], [[3/2]] | |||
* '''[[19/14]], [[28/19]]''' | |||
* [[15/11]], [[22/15]] | |||
* '''[[26/19]], [[19/13]]''' | |||
* [[11/8]], [[16/11]] | |||
* [[18/13]], [[13/9]] | |||
* [[7/5]], [[10/7]] | |||
* [[24/17]], [[17/12]] | |||
{| class="wikitable center-all right-2 left-5" | |||
! Ratio | |||
! Size ([[cents|¢]]) | |||
! colspan="2" | [[Color name]] | |||
! Name(s) | |||
|- | |||
| [[20/19]] | |||
| 88.801 | |||
| 19uy1 | |||
| nuyo unison | |||
| lesser undevicesimal semitone | |||
|- | |||
| [[19/18]] | |||
| 93.603 | |||
| 19o2 | |||
| ino 2nd | |||
| greater undevicesimal semitone | |||
|- | |||
| [[19/17]] | |||
| 192.558 | |||
| 19o17u2 | |||
| nosu 2nd | |||
| undevicesimal whole tone / "meantone" | |||
|- | |||
| [[22/19]] | |||
| 253.805 | |||
| 19u1o2 | |||
| nulo 2nd | |||
| undevicesimal second–third | |||
|- | |||
| [[19/16]] | |||
| 297.513 | |||
| 19o3 | |||
| ino 3rd | |||
| undevicesimal minor third | |||
|- | |||
| [[24/19]] | |||
| 404.442 | |||
| 19u3 | |||
| inu 3rd | |||
| lesser undevicesimal major third | |||
|- | |||
| [[19/15]] | |||
| 409.244 | |||
| 19og4 | |||
| nogu 4th | |||
| greater undevicesimal major third | |||
|- | |||
| [[19/14]] | |||
| 528.687 | |||
| 19or4 | |||
| noru 4th | |||
| undevicesimal acute fourth | |||
|- | |||
| [[26/19]] | |||
| 543.015 | |||
| 19u3o4 | |||
| nutho 4th | |||
| undevicesimal superfourth | |||
|- | |||
| [[19/13]] | |||
| 656.985 | |||
| 19o3u5 | |||
| nothu 5th | |||
| undevicesimal subfifth | |||
|- | |||
| [[28/19]] | |||
| 671.313 | |||
| 19uz5 | |||
| nuzo 5th | |||
| undevicesimal grave fifth | |||
|- | |||
| [[30/19]] | |||
| 790.756 | |||
| 19uy5 | |||
| nuyo 5th | |||
| lesser undevicesimal minor sixth | |||
|- | |||
| [[19/12]] | |||
| 795.558 | |||
| 19o6 | |||
| ino 6th | |||
| lesser undevicesimal minor sixth | |||
|- | |||
| [[32/19]] | |||
| 902.487 | |||
| 19u6 | |||
| inu 6th | |||
| undevicesimal major sixth | |||
|- | |||
| [[19/11]] | |||
| 946.195 | |||
| 19o1u7 | |||
| nolu 7th | |||
| undevicesimal sixth–seventh | |||
|- | |||
| [[34/19]] | |||
| 1007.442 | |||
| 19u17o7 | |||
| nuso 7th | |||
| undevicesimal minor seventh | |||
|- | |||
| [[36/19]] | |||
| 1106.397 | |||
| 19u7 | |||
| inu 7th | |||
| lesser undevicesimal major seventh | |||
|- | |||
| [[19/10]] | |||
| 1111.199 | |||
| 19og8 | |||
| nogu octave | |||
| greater undevicesimal major seventh | |||
|} | |||
The smallest [[equal division of the octave]] which is consistent in the 19-odd-limit is [[80edo]]; that which is distinctly consistent in the same is [[217edo]]. | |||
[[Category: | == See also == | ||
* [[19-limit]] ([[prime limit]]) | |||
[[Category:19-odd-limit| ]] <!-- main article --> |
Latest revision as of 14:15, 17 November 2023
The 19-odd-limit is the set of all rational intervals which can be written as 2k(a/b) where a, b ≤ 19 and k is an integer. To the 17-odd-limit, it adds 9 pairs of octave-reduced intervals involving 19.
Below is a list of all octave-reduced intervals in the 19-odd-limit.
- 1/1
- 20/19, 19/10
- 19/18, 36/19
- 18/17, 17/9
- 17/16, 32/17
- 16/15, 15/8
- 15/14, 28/15
- 14/13, 13/7
- 13/12, 24/13
- 12/11, 11/6
- 11/10, 20/11
- 10/9, 9/5
- 19/17, 34/19
- 9/8, 16/9
- 17/15, 30/17
- 8/7, 7/4
- 15/13, 26/15
- 22/19, 19/11
- 7/6, 12/7
- 20/17, 17/10
- 13/11, 22/13
- 19/16, 32/19
- 6/5, 5/3
- 17/14, 28/17
- 11/9, 18/11
- 16/13, 13/8
- 5/4, 8/5
- 24/19, 19/12
- 19/15, 30/19
- 14/11, 11/7
- 9/7, 14/9
- 22/17, 17/11
- 13/10, 20/13
- 17/13, 26/17
- 4/3, 3/2
- 19/14, 28/19
- 15/11, 22/15
- 26/19, 19/13
- 11/8, 16/11
- 18/13, 13/9
- 7/5, 10/7
- 24/17, 17/12
Ratio | Size (¢) | Color name | Name(s) | |
---|---|---|---|---|
20/19 | 88.801 | 19uy1 | nuyo unison | lesser undevicesimal semitone |
19/18 | 93.603 | 19o2 | ino 2nd | greater undevicesimal semitone |
19/17 | 192.558 | 19o17u2 | nosu 2nd | undevicesimal whole tone / "meantone" |
22/19 | 253.805 | 19u1o2 | nulo 2nd | undevicesimal second–third |
19/16 | 297.513 | 19o3 | ino 3rd | undevicesimal minor third |
24/19 | 404.442 | 19u3 | inu 3rd | lesser undevicesimal major third |
19/15 | 409.244 | 19og4 | nogu 4th | greater undevicesimal major third |
19/14 | 528.687 | 19or4 | noru 4th | undevicesimal acute fourth |
26/19 | 543.015 | 19u3o4 | nutho 4th | undevicesimal superfourth |
19/13 | 656.985 | 19o3u5 | nothu 5th | undevicesimal subfifth |
28/19 | 671.313 | 19uz5 | nuzo 5th | undevicesimal grave fifth |
30/19 | 790.756 | 19uy5 | nuyo 5th | lesser undevicesimal minor sixth |
19/12 | 795.558 | 19o6 | ino 6th | lesser undevicesimal minor sixth |
32/19 | 902.487 | 19u6 | inu 6th | undevicesimal major sixth |
19/11 | 946.195 | 19o1u7 | nolu 7th | undevicesimal sixth–seventh |
34/19 | 1007.442 | 19u17o7 | nuso 7th | undevicesimal minor seventh |
36/19 | 1106.397 | 19u7 | inu 7th | lesser undevicesimal major seventh |
19/10 | 1111.199 | 19og8 | nogu octave | greater undevicesimal major seventh |
The smallest equal division of the octave which is consistent in the 19-odd-limit is 80edo; that which is distinctly consistent in the same is 217edo.