User:ArrowHead294/Purely consistent EDOs by odd limit/Appendix

From Xenharmonic Wiki
Jump to navigation Jump to search

Additional results

The smallest EDOs purely consistent in the 7-, 15-, 31-, and 63-odd-limits are 10, 87, 311, and 3159811, respectively.

Additionally, there are (12) 7-odd-limit purely-consistent EDOs less than 87, (3) 15-odd-limit purely-consistent EDOs less than 311, and (481) 31-odd-limit purely consistent EDOs less than 3159811.

7-odd-limit purely-consistent EDOs less than 87
10, 15, 22, 31, 41, 46, 53, 56, 68, 72, 77, 84
15-odd-limit purely-consistent EDOs less than 311
87, 224, 270
31-odd-limit purely consistent EDOs less than 3159811
311, 16808, 20567, 25540, 28342, 31920, 34691, 60392, 65322, 90623, 93664, 116498, 124702, 143958, 148418, 164838, 165226, 165879, 175878, 185793, 195339, 195727, 209851, 210569, 212147, 220633, 241200, 248975, 256119, 263323, 265323, 266901, 285172, 286350, 292376, 298467, 301592, 308712, 318400, 324296, 328645, 330645, 334553, 339998, 344145, 346742, 349643, 351672, 354185, 358987, 360565, 363466, 370499, 371564, 373677, 377373, 385729, 385912, 389618, 395256, 405050, 406296, 406426, 414965, 431385, 439524, 451051, 459944, 460438, 470372, 477470, 482971, 490175, 490358, 491510, 494589, 530634, 536089, 536443, 536983, 542792, 547442, 550955, 570416, 571134, 579803, 587942, 589737, 590843, 597876, 606545, 607263, 610304, 610776, 612764, 642696, 643349, 646915, 649428, 652630, 666236, 669749, 675269, 684507, 687632, 710208, 729980, 732129, 736360, 739261, 739914, 744899, 746294, 751267, 753168, 763102, 763820, 766861, 771834, 775347, 775530, 785464, 791767, 824588, 829142, 836917, 839818, 849034, 850740, 852075, 855154, 859279, 861279, 866153, 876087, 891199, 896654, 905140, 911520, 920777, 922172, 934600, 937585, 948507, 948724, 951408, 958441, 965315, 965532, 971341, 977560, 986099, 1002907, 1003914, 1007697, 1024505, 1025223, 1030314, 1035157, 1041313, 1042031, 1044761, 1045072, 1051965, 1055543, 1078300, 1090545, 1095937, 1096925, 1099826, 1100479, 1109760, 1110083, 1117287, 1118576, 1122272, 1124385, 1132206, 1132399, 1141410, 1144451, 1146747, 1149207, 1152332, 1161259, 1161977, 1163331, 1173330, 1177679, 1183575, 1183898, 1200383, 1206732, 1220950, 1235074, 1236652, 1238652, 1248586, 1251882, 1265705, 1272803, 1281342, 1298150, 1306164, 1311973, 1326097, 1330723, 1334236, 1336031, 1336749, 1337137, 1349124, 1359058, 1359776, 1363472, 1371247, 1373406, 1385788, 1395722, 1402459, 1403748, 1405326, 1410952, 1412530, 1418879, 1430801, 1432379, 1441583, 1447221, 1456502, 1461044, 1464029, 1476274, 1477852, 1479141, 1501975, 1506905, 1507476, 1508194, 1510114, 1511909, 1521824, 1522542, 1536666, 1539350, 1542475, 1549284, 1553474, 1567297, 1577231, 1581515, 1594757, 1595639, 1598323, 1601448, 1612447, 1615348, 1626270, 1626795, 1660650, 1662269, 1667854, 1680894, 1691893, 1696307, 1697702, 1705229, 1711826, 1712544, 1714510, 1719623, 1726755, 1737149, 1749201, 1756675, 1771517, 1777866, 1785865, 1788325, 1791366, 1800753, 1810687, 1823016, 1824594, 1829312, 1833714, 1836528, 1836839, 1846120, 1853647, 1862540, 1867470, 1872474, 1887704, 1894106, 1895501, 1897231, 1908401, 1912309, 1918335, 1921159, 1953026, 1955322, 1959105, 1973012, 1975913, 1976631, 1984052, 2010604, 2026347, 2027412, 2027636, 2038064, 2044444, 2051887, 2052458, 2066011, 2073109, 2083614, 2086792, 2089917, 2092818, 2092958, 2095859, 2097931, 2109766, 2112279, 2114739, 2116970, 2126090, 2129087, 2132082, 2148890, 2151791, 2161135, 2169674, 2183581, 2186482, 2197404, 2202225, 2203290, 2207338, 2208403, 2222568, 2222751, 2224146, 2235863, 2268836, 2285644, 2287439, 2293658, 2296255, 2299768, 2307242, 2310466, 2313591, 2322655, 2327809, 2331117, 2355228, 2358741, 2372564, 2381821, 2382209, 2384281, 2387794, 2390090, 2396333, 2398629, 2427682, 2442601, 2448969, 2458496, 2461481, 2463951, 2475304, 2479535, 2488074, 2489652, 2504882, 2515127, 2526480, 2534619, 2543158, 2547047, 2556981, 2563855, 2570888, 2581738, 2595250, 2598546, 2599941, 2609328, 2619262, 2622303, 2626006, 2639829, 2640400, 2646426, 2651182, 2654223, 2663952, 2671031, 2676657, 2680900, 2685873, 2687839, 2688774, 2691005, 2702681, 2712926, 2719306, 2722207, 2722925, 2733182, 2739733, 2742774, 2753857, 2756898, 2757616, 2773706, 2774424, 2775819, 2784358, 2784488, 2787936, 2788247, 2793885, 2798181, 2809534, 2810693, 2814989, 2833397, 2839112, 2841541, 2861033, 2861751, 2881600, 2893789, 2895184, 2903723, 2904434, 2924420, 2932776, 2934354, 2940657, 2949196, 2949584, 2963407, 2969045, 2971946, 2972223, 2978249, 2981504, 2982157, 2986571, 2997710, 2999676, 3000394, 3008169, 3014906, 3037222, 3044366, 3046826, 3049339, 3051893, 3056760, 3068949, 3076392, 3083490, 3100298, 3103069, 3114422, 3128115, 3134271, 3134989, 3139285, 3144923, 3148812, 3151797, 3158746

Code used

This is the JavaScript code I use to find purely-consistent EDOs by odd limit.

function et_error(interval, et)
{
    return [1200, et * 100].map(x => Math.round(x * 100 * (Math.round(et * Math.log2(interval)) / et - Math.log2(interval))) / 100).concat(Math.round(et * Math.log2(interval)) % et);
}

function min_et(h, max_err_pct, max_edos)
{
    var a = 0, i = 1, j = 0, start = Date.now(), output = new Array();
    h = Math.round(Math.abs(h));
    h = h + 1 - (h % 2);

    while (j <= max_edos)
    {
        a = 1;
        for (var k = 3; k <= h; k += 2)
        {
            if (Math.abs(et_error(k, i)[1]) > max_err_pct)
            {
                a = 0;
            }
        }
        if (a == 1)
        {
            j++;
            console.log(i + " | " + (Date.now() - start)/1000 + "s");
        }
        i++;
    }
}