148418edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 148417edo148418edo148419edo →
Prime factorization 2 × 74209
Step size 0.00808527¢
Fifth 86819\148418 (701.955¢)
Semitones (A1:m2) 14061:11159 (113.7¢ : 90.22¢)
Consistency limit 39
Distinct consistency limit 39
Special properties

148418 equal divisions of the octave (abbreviated 148418edo), or 148418-tone equal temperament (148418tet), 148418 equal temperament (148418et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 148418 equal parts of about 0.00809 ¢ each. Each step of 148418edo represents a frequency ratio of 21/148418, or the 148418th root of 2.

148418edo is a zeta peak edo, distinctly consistent through the 39-odd-limit. It marks the first equal temperament with lower relative errors after 16808 in the 23-, 29-, and 31-limit, the first after 83096 in the 37-limit, and the first after 95524 in the 41-limit. Some of the simpler commas it tempers out include 408761/408760, 453376/453375, 509796/509795, 601426/601425, 633556/633555, 709632/709631, 949026/949025, 1154440/1154439, 1163800/1163799, 1255501/1255500, 2023425/2023424, 2307361/2307360, 2697696/2697695, 3897166/3897165, 4096576/4096575, and 5909761/5909760.

Prime harmonics

Approximation of prime harmonics in 148418edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00000 +0.00029 +0.00061 -0.00002 +0.00063 +0.00112 -0.00048 +0.00076 -0.00015 +0.00143 +0.00074
relative (%) +0 +4 +8 -0 +8 +14 -6 +9 -2 +18 +9
Steps
(reduced)
148418
(0)
235237
(86819)
344616
(47780)
416662
(119826)
513442
(68188)
549212
(103958)
606653
(12981)
630469
(36797)
671378
(77706)
721012
(127340)
735292
(141620)

Subsets and supersets

Since 148418 factors into 2 × 74209, 148418edo has subset edos 2 and 74209.