34691edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 34690edo 34691edo 34692edo →
Prime factorization 113 × 307
Step size 0.0345911¢ 
Fifth 20293\34691 (701.957¢)
Semitones (A1:m2) 3287:2608 (113.7¢ : 90.21¢)
Consistency limit 41
Distinct consistency limit 41
Special properties

34691 equal divisions of the octave (abbreviated 34691edo or 34691ed2), also called 34691-tone equal temperament (34691tet) or 34691 equal temperament (34691et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 34691 equal parts of about 0.0346 ¢ each. Each step represents a frequency ratio of 21/34691, or the 34691st root of 2.

34691edo is a zeta peak edo and zeta peak integer edo, consistent in the 41-odd-limit with a lower relative error than any previous equal temperaments in the 41-limit.

Prime harmonics

Approximation of prime harmonics in 34691edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41
Error Absolute (¢) +0.00000 +0.00228 -0.00026 +0.00174 -0.00492 +0.00158 -0.00600 +0.00507 +0.00388 -0.00757 -0.00084 -0.00507 +0.00565
Relative (%) +0.0 +6.6 -0.8 +5.0 -14.2 +4.6 -17.3 +14.7 +11.2 -21.9 -2.4 -14.7 +16.3
Steps
(reduced)
34691
(0)
54984
(20293)
80550
(11168)
97390
(28008)
120011
(15938)
128372
(24299)
141798
(3034)
147365
(8601)
156927
(18163)
168528
(29764)
171866
(33102)
180721
(7266)
185859
(12404)