20567edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 20566edo 20567edo 20568edo →
Prime factorization 131 × 157
Step size 0.0583459¢ 
Fifth 12031\20567 (701.959¢)
Semitones (A1:m2) 1949:1546 (113.7¢ : 90.2¢)
Consistency limit 57
Distinct consistency limit 57

20567 equal divisions of the octave (abbreviated 20567edo or 20567ed2), also called 20567-tone equal temperament (20567tet) or 20567 equal temperament (20567et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 20567 equal parts of about 0.0583 ¢ each. Each step represents a frequency ratio of 21/20567, or the 20567th root of 2.

20567edo is a remarkable very high-limit system, distinctly consistent through the 57-odd-limit, with a lower relative error than any previous equal temperaments in the 43-limit. It tempers out 33814/33813, 35344/35343, 37180/37179, 42484/42483, 42688/42687, 47125/47124, 48504/48503, 67915/67914, 70500/70499, 91885/91884, 126225/126224, 156520/156519, 194580/194579, 206800/206793, and 561925/561924 in the 53-limit.

Prime harmonics

Approximation of prime harmonics in 20567edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.0000 +0.0044 -0.0056 +0.0077 -0.0076 +0.0033 +0.0089 -0.0073 -0.0058 -0.0056 +0.0026 +0.0101
Relative (%) +0.0 +7.6 -9.5 +13.1 -13.0 +5.6 +15.2 -12.5 -9.9 -9.5 +4.4 +17.3
Steps
(reduced)
20567
(0)
32598
(12031)
47755
(6621)
57739
(16605)
71150
(9449)
76107
(14406)
84067
(1799)
87367
(5099)
93036
(10768)
99914
(17646)
101893
(19625)
107143
(4308)
Approximation of prime harmonics in 20567edo (continued)
Harmonic 41 43 47 53 59 61 67 71 73 79 83 89
Error Absolute (¢) +0.0133 +0.0007 -0.0134 -0.0082 -0.0186 -0.0277 -0.0150 +0.0088 -0.0071 +0.0082 -0.0254 -0.0239
Relative (%) +22.8 +1.3 -22.9 -14.0 -32.0 -47.5 -25.6 +15.1 -12.2 +14.1 -43.6 -40.9
Steps
(reduced)
110189
(7354)
111602
(8767)
114241
(11406)
117806
(14971)
120988
(18153)
121977
(19142)
124761
(1359)
126482
(3080)
127306
(3904)
129650
(6248)
131115
(7713)
133186
(9784)