241200edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 241199edo241200edo241201edo →
Prime factorization 24 × 32 × 52 × 67
Step size 0.00497512¢
Fifth 141093\241200 (701.955¢) (→15677\26800)
Semitones (A1:m2) 22851:18135 (113.7¢ : 90.22¢)
Consistency limit 39
Distinct consistency limit 39
Special properties

241200 equal divisions of the octave (abbreviated 241200edo or 241200ed2), also called 241200-tone equal temperament (241200tet) or 241200 equal temperament (241200et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 241200 equal parts of about 0.005 ¢ each. Each step represents a frequency ratio of 21/241200, or the 241200th root of 2.

241200edo is the 60th zeta peak edo and the first one that 1200 divides, making it compatible with cents. It is also a zeta peak integer edo. It is a strong 37-limit system, distinctly consistent in the 39-odd-limit, with a lower 37-limit relative error than any previous equal temperaments.

Prime harmonics

Approximation of prime harmonics in 241200edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error absolute (¢) +0.00000 +0.00022 -0.00028 -0.00004 +0.00047 -0.00030 -0.00019 -0.00058 -0.00072 -0.00008 -0.00075 -0.00076 +0.00227 -0.00029 +0.00084
relative (%) +0 +4 -6 -1 +9 -6 -4 -12 -14 -2 -15 -15 +46 -6 +17
Steps
(reduced)
241200
(0)
382293
(141093)
560049
(77649)
677134
(194734)
834415
(110815)
892546
(168946)
985896
(21096)
1024600
(59800)
1091083
(126283)
1171745
(206945)
1194952
(230152)
1256520
(50520)
1292242
(86242)
1308815
(102815)
1339767
(133767)