# 241200edo

Jump to navigation
Jump to search
Prime factorization
2
Step size
0.00497512¢
Fifth
141093\241200 (701.955¢) (→15677\26800)
Semitones (A1:m2)
22851:18135 (113.7¢ : 90.22¢)
Consistency limit
39
Distinct consistency limit
39
Special properties

← 241199edo | 241200edo | 241201edo → |

^{4}× 3^{2}× 5^{2}× 67**241200 equal divisions of the octave** (abbreviated **241200edo** or **241200ed2**), also called **241200-tone equal temperament** (**241200tet**) or **241200 equal temperament** (**241200et**) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 241200 equal parts of about 0.00498 ¢ each. Each step represents a frequency ratio of 2^{1/241200}, or the 241200th root of 2.

241200edo is the 60th zeta peak edo and the first one that 1200 divides, making it compatible with cents. It is also a zeta peak integer edo. It is a strong 37-limit system, distinctly consistent in the 39-odd-limit, with a lower 37-limit relative error than any previous equal temperaments.

### Prime harmonics

Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Error | Absolute (¢) | +0.00000 | +0.00022 | -0.00028 | -0.00004 | +0.00047 | -0.00030 | -0.00019 | -0.00058 | -0.00072 | -0.00008 | -0.00075 | -0.00076 | +0.00227 | -0.00029 | +0.00084 |

Relative (%) | +0.0 | +4.5 | -5.6 | -0.7 | +9.4 | -6.0 | -3.7 | -11.6 | -14.4 | -1.6 | -15.0 | -15.2 | +45.6 | -5.9 | +16.9 | |

Steps (reduced) |
241200 (0) |
382293 (141093) |
560049 (77649) |
677134 (194734) |
834415 (110815) |
892546 (168946) |
985896 (21096) |
1024600 (59800) |
1091083 (126283) |
1171745 (206945) |
1194952 (230152) |
1256520 (50520) |
1292242 (86242) |
1308815 (102815) |
1339767 (133767) |