# Tricot family

(Redirected from Trident)

The generator for tricot temperament is the real cube root of third harmonic, 31/3, tuned between 63/44 and 13/9. Tricot temperament can be described as 53&70 temperament, tempering out the tricot comma, [39 -29 3 in the 5-limit. There are some mappings for 7-limit extension of this temperament: septimal tricot (53&70, also called as "trimot"), trident (53&229) and trillium (53&441). Tempering out hemifamity comma (5120/5103) leads to septimal tricot, porwell comma (6144/6125) leads to trident, and ragisma (4375/4374) leads to trillium.

## Tricot

Subgroup: 2.3.5

Comma list: [39 -29 3 = 68719476736000/68630377364883

Mapping: [1 0 -13], 0 3 29]]

Mapping generators: ~2, ~59049/40960

Wedgie⟨⟨3 29 39]]

POTE generator: ~59049/40960 = 634.012

## Septimal tricot

Subgroup: 2.3.5.7

Comma list: 2430/2401, 5120/5103

Mapping: [1 0 -13 -3], 0 3 29 11]]

Wedgie⟨⟨3 29 11 39 9 -56]]

POTE generator: ~81/56 = 634.0259

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 121/120, 5120/5103

Mapping: [1 0 -13 -3 -5], 0 3 29 11 16]]

POTE generator: ~63/44 = 634.0273

Optimal GPV sequence: 17c, 36ce, 53, 70, 123de

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 121/120, 169/168, 352/351

Mapping: [1 0 -13 -3 -5 0], 0 3 29 11 16 7]]

POTE generator: ~13/9 = 634.0115

Optimal GPV sequence: 17c, 36ce, 53, 70, 123de

## Trident

Subgroup: 2.3.5.7

Comma list: 6144/6125, 14348907/14336000

Mapping: [1 0 -13 25], 0 3 29 -42]]

Wedgie⟨⟨3 29 -42 39 -75 -179]]

POTE generator: ~4096/2835 = 634.0480

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 6144/6125, 8019/8000

Mapping: [1 0 -13 25 -33], 0 3 29 -42 69]]

POTE generator: ~231/160 = 634.0669

Optimal GPV sequence: 53, 176, 229

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 2080/2079, 2197/2187, 3146/3125

Mapping: [1 0 -13 25 -33 0], 0 3 29 -42 69 7]]

POTE generator: ~13/9 = 634.0652

Optimal GPV sequence: 53, 176, 229

## Trillium

Subgroup: 2.3.5.7

Comma list: 4375/4374, 1099511627776/1098337086315

Mapping: [1 0 -13 53], 0 3 29 -95]]

Wedgie⟨⟨3 29 -95 39 -159 -302]]

POTE generator: ~23625/16384 = 634.0118

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 131072/130977, 759375/758912

Mapping: [1 0 -13 53 -89], 0 3 29 -95 175]]

POTE generator: ~3888/2695 = 634.0094

Optimal GPV sequence: 53, 441, 494, 935, 1429

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 4096/4095, 4375/4374, 78125/78078

Mapping: [1 0 -13 53 -89 -28], 0 3 29 -95 175 60]]

POTE generator: ~75/52 = 634.0095

Optimal GPV sequence: 53, 441, 494, 935, 1429

### Pseudotrillium

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 5632/5625, 4108797/4096000

Mapping: [1 0 -13 53 -61], 0 3 29 -95 122]]

POTE generator: ~231/160 = 634.0190

Optimal GPV sequence: 53, 335, 388

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 847/845, 1001/1000, 4096/4095, 4375/4374

Mapping: [1 0 -13 53 -61 -28], 0 3 29 -95 122 60]]

POTE generator: ~75/52 = 634.0181

Optimal GPV sequence: 53, 335, 388

## Tritricot

Subgroup: 2.3.5.7

Comma list: 250047/250000, 11785390260224/11767897353375

Mapping: [3 6 19 30], 0 -3 -29 -52]]

Wedgie⟨⟨9 87 156 117 222 118]]

POTE generator: ~100352/91125 = 165.9837

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 4000/3993, 166698/166375, 200704/200475

Mapping: [3 6 19 30 22], 0 -3 -29 -52 -28]]

POTE generator: ~11/10 = 165.9835

Optimal GPV sequence: 159, 282, 441

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1575/1573, 2080/2079, 34398/34375, 43904/43875

Mapping: [3 6 19 30 22 36], 0 -3 -29 -52 -28 -60]]

POTE generator: ~11/10 = 165.9842

Optimal GPV sequence: 159, 282, 441

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 936/935, 1575/1573, 1701/1700, 2025/2023, 8624/8619

Mapping: [3 6 19 30 22 36 16], 0 -3 -29 -52 -28 -60 -9]]

POTE generator: ~11/10 = 165.9805

Optimal GPV sequence: 159, 282, 441