# Gamelismic family

(Redirected from Gamel)

The gamelismic family of temperaments are rank-3 temperaments tempering out 1029/1024.

## Gamelismic

Subgroup: 2.3.5.7

Comma list: 1029/1024

Mapping[1 1 0 3], 0 3 0 -1], 0 0 1 0]]

mapping generators: ~2, ~8/7, ~5

Mapping to lattice: [0 3 0 -1], 0 0 1 0]]

8/7 length = 0.5192, 5/4 length = log25
Angle (8/7, 5/4) = 90 degrees

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.6875, ~5/4 = 385.1853

Minimax tuning: c = 1029/1024

[[1 0 0 0, [5/2 3/4 0 -3/4, [5/2 -1/4 1 -3/4, [5/2 -1/4 0 1/4]
eigenmonzo (unchanged-interval) basis: 2.7/3.5/3
[[1 0 0 0, [10/7 6/7 0 -3/7, [10/7 -1/7 1 -3/7, [20/7 -2/7 0 1/7]
eigenmonzo (unchanged-interval) basis: 2.5/3.9/7

TE tuning map: 1200.486 1901.833 2786.314 3367.676]

Projection pair: 3 1024/343 to 2.5.7

Scales: portent26

## Portent

Portent has a normal comma list [1029/1024, 385/384] and also tempers out 441/440.

Subgroup: 2.3.5.7.11

Comma list: 385/384, 441/440

Mapping[1 1 0 3 5], 0 3 0 -1 4], 0 0 1 0 -1]]

Mapping to lattice: [0 3 1 -1 3], 0 0 1 0 -1]]

Minkowski lattice basis:

8/7 length = 0.46467, 12/11 length = 1.931
Angle (8/7, 12/11) = 86.657 degrees

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.6884, ~5/4 = 385.1618

Minimax tuning: c = 1029/1024, e = 385/384

• 11-odd-limit: 3 1/7c flat, 5 and 7 2/7c flat, 11 e-3/7c flat
[[1 0 0 0 0, [10/7 6/7 0 -3/7 0, [39/14 4/7 1/2 -2/7 -1/2, [20/7 -2/7 0 1/7 0, [39/14 4/7 -1/2 -2/7 1/2]
eigenmonzo (unchanged-interval) basis: 2.11/5, 9/7

Projection pairs: 3 1024/343 11 131072/12005 to 2.5.7

Scales: portent26

### Portending

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 364/363, 385/384

Mapping: [1 1 0 3 5 6], 0 3 0 -1 4 12], 0 0 1 0 -1 -2]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.9128, ~5/4 = 384.7278

### Portentous

Subgroup: 2.3.5.7.11.13

Comma list: 385/384, 441/440, 625/624

Mapping: [1 1 0 3 5 -5], 0 3 0 -1 4 -3], 0 0 1 0 -1 4]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.6843, ~5/4 = 384.9830

### Ominous

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 385/384, 441/440

Mapping: [1 1 0 3 5 1], 0 3 0 -1 4 -10], 0 0 1 0 -1 2]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.4088, ~5/4 = 385.3825

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 273/272, 351/350, 385/384, 441/440

Mapping: [1 1 0 3 5 1 1], 0 3 0 -1 4 -10 -8], 0 0 1 0 -1 2 2]]

Mapping to lattice: [0 1 1 0 0 -1 0], 0 -1 -1 0 -1 2 1]]

Lattice basis:

8/7 length = 0.3859, 6/5 length = 1.1303
Angle (8/7, 6/5) = 98.6015

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.4313, ~5/4 = 385.2890

Minimax tuning:

• 17-odd-limit
[[1 0 0 0 0 0 0, [7/4 9/10 0 0 -3/10 -3/20 0, [5/2 7/5 0 0 -4/5 1/10 0, [11/4 -3/10 0 0 1/10 1/20 0, [7/2 -1/5 0 0 2/5 -3/10 0, [7/2 -1/5 0 0 -3/5 7/10 0, [4 2/5 0 0 -4/5 3/5 0]
eigenmonzo (unchanged-interval) basis: 2.11/9.13/9

### Momentous

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 385/384

Mapping: [1 1 0 3 5 7], 0 3 0 -4 1 -5], 0 0 1 0 -1 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.4088, ~5/4 = 385.3825

### Foreboding

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 144/143, 275/273

Mapping: [1 1 0 3 5 1], 0 3 0 -1 4 2], 0 0 1 0 -1 1]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.3664, ~5/4 = 382.3425

### Portannic

Subgroup: 2.3.5.7.11.13

Comma list: 385/384, 441/440, 10985/10976

Mapping: [1 1 2 3 3 4], 0 3 0 -1 4 -1], 0 0 3 0 -3 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.6434, ~14/13 = 128.3440

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 273/272, 385/384, 441/440, 8624/8619

Mapping: [1 1 2 3 3 4 4], 0 3 0 -1 4 -1 1], 0 0 3 0 -3 -1 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 233.6803, ~14/13 = 128.4149