349edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 348edo349edo350edo →
Prime factorization 349 (prime)
Step size 3.4384¢ 
Fifth 204\349 (701.433¢)
Semitones (A1:m2) 32:27 (110¢ : 92.84¢)
Consistency limit 5
Distinct consistency limit 5

349 equal divisions of the octave (abbreviated 349edo or 349ed2), also called 349-tone equal temperament (349tet) or 349 equal temperament (349et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 349 equal parts of about 3.44 ¢ each. Each step represents a frequency ratio of 21/349, or the 349th root of 2.

Theory

349edo is only consistent to the 5-odd-limit. Omitting the harmonic 7, it is consistent to the 13-odd-limit with a flat tendency. In the 2.3.5.11.13 subgroup, the equal temperament tempers out 625/624, 17303/17280, 28561/28512, 41067/40960, 43940/43923, 85293/85184, 131625/131072 and 166375/165888.

Odd harmonics

Approximation of odd harmonics in 349edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.52 -1.21 +0.80 -1.04 -1.17 -1.56 +1.70 +1.63 +1.63 +0.28 +0.95
Relative (%) -15.2 -35.3 +23.3 -30.4 -34.2 -45.3 +49.5 +47.5 +47.3 +8.1 +27.7
Steps
(reduced)
553
(204)
810
(112)
980
(282)
1106
(59)
1207
(160)
1291
(244)
1364
(317)
1427
(31)
1483
(87)
1533
(137)
1579
(183)

Subsets and supersets

349edo is the 70th prime edo. 1047edo, which triples it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-553 349 [349 553]] 0.1648 0.1648 4.79
2.3.5 2109375/2097152, [-31 43 -16 [349 553 810]] 0.2841 0.2158 6.28
2.3.5.11 166375/165888, 1366875/1362944, 1953125/1948617 [349 553 810 1207]] 0.2980 0.1884 5.48
2.3.5.11.13 625/624, 17303/17280, 41067/40960, 216513/216320 [349 553 810 1207 1291]] 0.3227 0.1756 5.11

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 79\349 271.63 75/64 Orson

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium