574edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 573edo574edo575edo →
Prime factorization 2 × 7 × 41
Step size 2.09059¢
Fifth 336\574 (702.439¢) (→24\41)
Semitones (A1:m2) 56:42 (117.1¢ : 87.8¢)
Consistency limit 5
Distinct consistency limit 5

574 equal divisions of the octave (abbreviated 574edo), or 574-tone equal temperament (574tet), 574 equal temperament (574et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 574 equal parts of about 2.09 ¢ each. Each step of 574edo represents a frequency ratio of 21/574, or the 574th root of 2.

Theory

574 = 14 × 41, and 574edo shares the harmonic 3 with 41edo. Unfortunately, it is only consistent to the 5-odd-limit, and the patent val and the 574d val are about equally viable.

The 574d val tempers out 4375/4374 (ragisma), 29360128/29296875 (quasiorwellisma), and 40500000/40353607 in the 7-limit; 3025/3024, 5632/5625, 9801/9800, and 19712/19683 in the 11-limit; 676/675, 4225/4224, and 10648/10647 in the 13-limit.

The patent val tempers out 2100875/2097152 (rainy comma), 67108864/66976875 (vishnuzma), 49009212/48828125, and 78125000/78121827 (euzenius comma) in the 7-limit; 5632/5625, 42875/42768, 117649/117128, 131072/130977, 160083/160000, 161280/161051, 166698/166375, 391314/390625, and 532400/531441 in the 11-limit; 676/675, 1001/1000, 2080/2079, 4096/4095, and 4225/4224 in the 13-limit.

Prime harmonics

Approximation of prime harmonics in 574edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000 +0.484 +0.446 -0.882 +0.598 -0.110 -0.426 -0.649 +0.994 -1.006 +0.609
relative (%) +0 +23 +21 -42 +29 -5 -20 -31 +48 -48 +29
Steps
(reduced)
574
(0)
910
(336)
1333
(185)
1611
(463)
1986
(264)
2124
(402)
2346
(50)
2438
(142)
2597
(301)
2788
(492)
2844
(548)

Subsets and supersets

Since 574 factors into 2 × 7 × 41, 574edo has subset edos 2, 7, 14, 41, 82, and 287.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 [23 6 -14, [42 -47 14 [574 910 1333]] -0.1658 0.1260 6.03
2.3.5.7 4375/4374, 29360128/29296875, 40500000/40353607 [574 910 1333 1612]] (574d) -0.2320 0.1583 7.57
2.3.5.7.11 3025/3024, 4375/4374, 5632/5625, 40500000/40353607 [574 910 1333 1612 1986]] (574d) -0.2202 0.1435 6.87
2.3.5.7.11.13 676/675, 3025/3024, 4225/4224, 4375/4374, 41600/41503 [574 910 1333 1612 1986 2124]] (574d) -0.1786 0.1607 7.69
2.3.5.7 10976/10935, 2100875/2097152, 49009212/48828125 [574 910 1333 1611]] (574) -0.0459 0.2347 11.23
2.3.5.7.11 5632/5625, 10976/10935, 131072/130977, 166698/166375 [574 910 1333 1611 1986]] (574) -0.0713 0.2160 10.33
2.3.5.7.11.13 676/675, 1001/1000, 4096/4095, 10976/10935, 166698/166375 [574 910 1333 1611 1986 2124]] (574) -0.0544 0.2007 9.60

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
2 34\571 71.454 25/24 Vishnu (574d)

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct