49edo
← 48edo | 49edo | 50edo → |
49 equal divisions of the octave (abbreviated 49edo or 49ed2), also called 49-tone equal temperament (49tet) or 49 equal temperament (49et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 49 equal parts of about 24.5 ¢ each. Each step represents a frequency ratio of 21/49, or the 49th root of 2.
Theory
49edo is very much on the sharp side of things, with sharp tunings of harmonics 3, 5, 7, and 11. It is the optimal patent val for superpyth temperament in the 7- and 11-limit, archytas (7-limit) and ares (11-limit) planar temperaments, being almost exactly equal to 3⁄10-comma superpyth and the e-based analog of Lucy tuning. It tempers out 64/63, 245/243, and 3125/3087 in the 7-limit, and 100/99 and 1375/1372 in the 11-limit.
Harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.2 | +5.5 | +10.8 | -8.0 | +11.9 | -7.9 | -10.7 | -7.0 | -3.6 | -5.5 | +8.5 |
Relative (%) | +33.7 | +22.6 | +44.0 | -32.6 | +48.8 | -32.2 | -43.8 | -28.6 | -14.8 | -22.4 | +34.5 | |
Steps (reduced) |
78 (29) |
114 (16) |
138 (40) |
155 (8) |
170 (23) |
181 (34) |
191 (44) |
200 (4) |
208 (12) |
215 (19) |
222 (26) |
Subsets and supersets
Since 49 factors into 72, 49edo contains 7edo as its only nontrivial subset. 49edo is the first square edo with a non-enfactored diatonic fifth.
Intervals
# | Cents | Approximate Ratios* | Ups and Downs Notation |
---|---|---|---|
0 | 0.000 | 1/1 | D |
1 | 24.490 | 50/49 | ^D, vE♭ |
2 | 48.980 | 28/27, 36/35, 49/48, 81/80 | ^^D, E♭ |
3 | 73.469 | 22/21, 25/24, 33/32 | ^3D, ^E♭ |
4 | 97.959 | 16/15, 21/20 | v3D♯, ^^E♭ |
5 | 122.449 | 15/14 | vvD♯, ^3E♭ |
6 | 146.939 | 12/11 | vD♯, v3E |
7 | 171.429 | 10/9, 11/10 | D♯, vvE |
8 | 195.918 | 28/25 | ^D♯, vE |
9 | 220.408 | 8/7, 9/8 | E |
10 | 244.898 | 125/108, 144/125 | ^E, vF |
11 | 269.388 | 7/6 | F |
12 | 293.878 | 25/21, 33/28 | ^F, vG♭ |
13 | 318.367 | 6/5 | ^^F, G♭ |
14 | 342.857 | 11/9 | ^3F, ^G♭ |
15 | 367.347 | 27/22 | v3F♯, ^^G♭ |
16 | 391.837 | 5/4 | vvF♯, ^3G♭ |
17 | 416.327 | 14/11 | vF♯, v3G |
18 | 440.816 | 9/7 | F♯, vvG |
19 | 465.306 | 125/96, 162/125 | ^F♯, vG |
20 | 489.796 | 4/3, 21/16 | G |
21 | 514.286 | 75/56 | ^G, vA♭ |
22 | 538.776 | 15/11, 27/20 | ^^G, A♭ |
23 | 563.265 | 11/8 | ^3G, ^A♭ |
24 | 587.755 | 7/5 | v3G♯, ^^A♭ |
25 | 612.245 | 10/7 | vvG♯, ^3A♭ |
26 | 636.735 | 16/11 | vG♯, v3A |
27 | 661.244 | 22/15, 40/27 | G♯, vvA |
28 | 685.714 | 112/75 | ^G♯, vA |
29 | 710.204 | 3/2, 32/21 | A |
30 | 734.694 | 125/81, 192/125 | ^A, vB♭ |
31 | 759.184 | 14/9 | ^^A, B♭ |
32 | 783.673 | 11/7 | ^3A, ^B♭ |
33 | 808.163 | 8/5 | v3A♯, ^^B♭ |
34 | 832.653 | 44/27 | vvA♯, ^3B♭ |
35 | 857.143 | 18/11 | vA♯, v3B |
36 | 881.633 | 5/3 | A♯, vvB |
37 | 906.122 | 42/25, 56/33 | ^A♯, vB |
38 | 930.612 | 12/7 | B |
39 | 955.102 | 125/72, 216/125 | ^B, vC |
40 | 979.592 | 7/4, 16/9 | C |
41 | 1004.082 | 25/14 | ^C, vD♭ |
42 | 1028.571 | 9/5, 20/11 | ^^C, D♭ |
43 | 1053.061 | 11/6 | ^3C, ^D♭ |
44 | 1077.551 | 28/15 | v3C♯, ^^D♭ |
45 | 1102.041 | 15/8, 40/21 | vvC♯, ^3D♭ |
46 | 1126.531 | 21/11, 48/25, 64/33 | vC♯, v3D |
47 | 1151.020 | 27/14, 35/18, 96/49, 160/81 | C♯, vvD |
48 | 1175.510 | 49/25 | ^C♯, vD |
49 | 1200.000 | 2/1 | D |
* Based on 49edo's 11-limit patent val ⟨49 78 114 138 170] mapping
Notation
Ups and downs notation
Using Helmholtz–Ellis accidentals, 49edo can be notated using ups and downs notation:
Step Offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp Symbol | ||||||||||||||||||
Flat Symbol |
Sagittal notation
Evo flavor
Revo flavor
Approximation to JI
Interval mappings
The following tables show how 15-odd-limit intervals are represented in 49edo. Prime harmonics are in bold; inconsistent intervals are in italics.
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
13/9, 18/13 | 0.117 | 0.5 |
11/7, 14/11 | 1.181 | 4.8 |
15/11, 22/15 | 1.825 | 7.5 |
7/6, 12/7 | 2.517 | 10.3 |
5/3, 6/5 | 2.726 | 11.1 |
15/13, 26/15 | 2.843 | 11.6 |
15/14, 28/15 | 3.006 | 12.3 |
11/6, 12/11 | 3.698 | 15.1 |
11/9, 18/11 | 4.551 | 18.6 |
13/11, 22/13 | 4.668 | 19.1 |
7/5, 10/7 | 5.243 | 21.4 |
5/4, 8/5 | 5.523 | 22.6 |
9/7, 14/9 | 5.732 | 23.4 |
13/7, 14/13 | 5.849 | 23.9 |
11/10, 20/11 | 6.424 | 26.2 |
13/8, 16/13 | 7.875 | 32.2 |
9/8, 16/9 | 7.992 | 32.6 |
3/2, 4/3 | 8.249 | 33.7 |
13/12, 24/13 | 8.366 | 34.2 |
15/8, 16/15 | 10.718 | 43.8 |
7/4, 8/7 | 10.766 | 44.0 |
9/5, 10/9 | 10.975 | 44.8 |
13/10, 20/13 | 11.092 | 45.3 |
11/8, 16/11 | 11.947 | 48.8 |
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
11/7, 14/11 | 1.181 | 4.8 |
15/11, 22/15 | 1.825 | 7.5 |
7/6, 12/7 | 2.517 | 10.3 |
5/3, 6/5 | 2.726 | 11.1 |
15/14, 28/15 | 3.006 | 12.3 |
11/6, 12/11 | 3.698 | 15.1 |
11/9, 18/11 | 4.551 | 18.6 |
7/5, 10/7 | 5.243 | 21.4 |
5/4, 8/5 | 5.523 | 22.6 |
9/7, 14/9 | 5.732 | 23.4 |
11/10, 20/11 | 6.424 | 26.2 |
13/8, 16/13 | 7.875 | 32.2 |
3/2, 4/3 | 8.249 | 33.7 |
7/4, 8/7 | 10.766 | 44.0 |
9/5, 10/9 | 10.975 | 44.8 |
11/8, 16/11 | 11.947 | 48.8 |
13/10, 20/13 | 13.398 | 54.7 |
15/8, 16/15 | 13.772 | 56.2 |
13/12, 24/13 | 16.124 | 65.8 |
9/8, 16/9 | 16.498 | 67.4 |
13/7, 14/13 | 18.641 | 76.1 |
13/11, 22/13 | 19.822 | 80.9 |
15/13, 26/15 | 21.647 | 88.4 |
13/9, 18/13 | 24.373 | 99.5 |
Zeta peaks
The strongest local zeta peak around 49edo is its second closest, 49.141 edo. One step is 24.419 cents, and two steps, 48.839 cents, is a good generator for Triple BP.
Approximation to irrational intervals
Acoustic ϕ and ϕϕ-1
49edo has a very close approximation of both acoustic phi and ϕϕ-1, a kind of logarithmic phi that divides acoustic phi logarithmically by phi (instead of dividing 2/1).
ϕϕ-1 has interesting applications as Metallic MOS, and in particular the fractal-like possibilities of self-similar subdivision of musical scales within acoustic phi.
Interval | Error (abs, ¢) | #\49 |
---|---|---|
ϕ / ϕϕ-1 = ϕ(2-ϕ) | 0.155 | 13 |
ϕ | −0.437 | 34 |
ϕϕ-1 | −0.592 | 21 |
Not until 592 do we find a better edo in terms of relative error on these two intervals (but whose edo-steps upon which these intervals are mapped are not based on the Fibonacci sequence, unlike 49edo).
Music
- Sevish - Star Nursery uses a scale based on acoustic phi and ϕϕ−1. 49edo provides a suitable approximation for this scale with the mode: 5 3 5 5 3 5 3 5
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [78 -49⟩ | [⟨49 78]] | −2.60 | 2.60 | 10.62 |
2.3.5 | 15625/15552, 20480/19683 | [⟨49 78 114]] | −2.53 | 2.12 | 8.69 |
2.3.5.7 | 64/63, 245/243, 3125/3087 | [⟨49 78 114 138]] | −2.85 | 1.92 | 7.87 |
2.3.5.7.11 | 64/63, 100/99, 245/243, 1331/1323 | [⟨49 78 114 138 170]] | −2.97 | 1.74 | 7.11 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 1\49 | 24.5 | 99/98 | Sengagen |
1 | 4\49 | 98.0 | 16/15 | Passion |
1 | 6\49 | 146.9 | 12/11 | Bohpier |
1 | 8\49 | 195.9 | 28/25 | Didacus |
1 | 11\49 | 269.4 | 7/6 | Infraorwell |
1 | 12\49 | 293.9 | 25/21 | Kleiboh |
1 | 13\49 | 318.4 | 6/5 | Catalan |
1 | 16\49 | 391.8 | 5/4 | Magus |
1 | 17\49 | 416.3 | 14/11 | Sqrtphi |
1 | 18\49 | 440.8 | 9/7 | Clyde |
1 | 19\49 | 465.3 | 55/36 | Semisept |
1 | 20\49 | 489.8 | 4/3 | Superpyth |
7 | 20\49 (1\49) |
489.8 (24.5) |
4/3 (250/243) |
Sevond (49) |
4/3 (25/24) |
Seville (49c) |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
MOS scales
Instruments
- Lumatone
See Lumatone mapping for 49edo
Music
- Deltarune - Man (cover) (2023)