39edt
← 38edt | 39edt | 40edt → |
39 equal divisions of the tritave (39edt) is the nonoctave tuning system derived by dividing the tritave (3/1) into 39 equal steps of approximately 48.8 cents each, or the 39th root of 3. It is also known as the Triple Bohlen-Pierce scale (Triple BP), since it divides each step of the equal-tempered Bohlen-Pierce scale (13edt) into three equal parts.
39edt can be described as approximately 24.606edo. This implies that each step of 39edt can be approximated by 5 steps of 123edo. 39edt contains within it a close approximation of 4ed11/5: every seventh step of 39edt equates to a step of 4ed11/5.
Theory
It is a strong no-twos 13-limit system, a fact first noted by Paul Erlich; in fact it has a better no-twos 13-odd limit relative error than any other edt up to 914edt. Like 26edt and 52edt, it is a multiple of 13edt and so contains the Bohlen-Pierce scale, being contorted in the no-twos 7-limit, tempering out the same BP commas, 245/243 and 3125/3087, as 13edt. In the 11-limit it tempers out 1331/1323 and in the 13-limit 275/273, 1575/1573, and 847/845. An efficient traversal is therefore given by Mintra temperament, which in the 13-limit tempers out 275/273 and 1575/1573 alongside 245/243, and is generated by the interval of 11/7, which serves as a macrodiatonic "superpyth" fourth and splits the BPS generator of 9/7, up a tritave, in three.
If octaves are inserted, 39edt is related to the 49f&172f temperament in the full 13-limit, known as triboh, tempering out 245/243, 275/273, 847/845 and 1575/1573, which has mapping [⟨1 0 0 0 0 0], ⟨0 39 57 69 85 91]]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth no-twos zeta peak edt.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +19.2 | +0.0 | -6.5 | -3.8 | -6.0 | -2.6 | +20.6 | +23.1 | -15.0 | +22.6 | +4.7 | -9.0 |
Relative (%) | +39.4 | +0.0 | -13.4 | -7.9 | -12.4 | -5.4 | +42.3 | +47.4 | -30.8 | +46.3 | +9.6 | -18.5 | |
Steps (reduced) |
25 (25) |
39 (0) |
57 (18) |
69 (30) |
85 (7) |
91 (13) |
101 (23) |
105 (27) |
111 (33) |
120 (3) |
122 (5) |
128 (11) |
Intervals
All intervals shown are within the 91-throdd limit and are consistently represented.
Steps | Cents | Hekts | Enneatonic degree | Corresponding 3.5.7.11.13 subgroup intervals |
Lambda (sLsLsLsLs, J = 1/1) |
Mintaka[7] (E macro-Phrygian) |
---|---|---|---|---|---|---|
0 | 0 | 0 | P1 | 1/1 | J | E |
1 | 48.8 | 33.3 | SP1 | 77/75 (+3.2c); 65/63 (-5.3c) | ^J | ^E, vF |
2 | 97.5 | 66.7 | sA1/sm2 | 35/33 (-4.3c); 81/77 (+9.9c) | vK | F |
3 | 146.3 | 100 | A1/m2 | 99/91 (+0.4c); 49/45 (-1.1c); 27/25 (+13.1c) | K | ^F, vGb, Dx |
4 | 195.1 | 133.3 | SA1/Sm2 | 55/49 (-4.9c); 91/81 (-6.5c); 39/35 (+7.7c) | ^K | Gb, vE# |
5 | 243.8 | 166.7 | sM2/sd3 | 15/13 (-3.9c); 63/55 (+8.7c) | vK#, vLb | ^Gb, E# |
6 | 292.6 | 200 | M2/d3 | 77/65 (-0.7c); 13/11 (+3.4c); 25/21 (-9.2c) | K#, Lb | vF#, ^E# |
7 | 341.4 | 233.3 | SM2/Sd3 | 11/9 (-6.0c); 91/75 (+6.6c) | ^K#, ^Lb | F# |
8 | 390.1 | 266.7 | sA2/sP3/sd4 | 49/39 (-5.0c); 81/65 (+9.2c) | vL | vG, ^F# |
9 | 438.9 | 300 | A2/P3/d4 | 9/7 (+3.8c); 35/27 (-10.3c) | L | G |
10 | 487.7 | 333.3 | SA2/SP3/Sd4 | 65/49 (-1.5c); 33/25 (+7.0c) | ^L | ^G, vAb |
11 | 536.4 | 366.7 | sA3/sm4/sd5 | 15/11 (-0.5c) | vM | Ab |
12 | 585.2 | 400 | A3/m4/d5 | 7/5 (+2.7c) | M | ^Ab, Fx |
13 | 634.0 | 433.3 | SA3/Sm4/Sd5 | 13/9 (-2.6c) | ^M | vG# |
14 | 682.7 | 466.7 | sM4/sm5 | 135/91 (+0.07c); 49/33 (-1.6c); 81/55 (+12.6c) | vM#, vNb | G# |
15 | 731.5 | 500 | M4/m5 | 75/49 (-5.4c); 117/77 (+7.2c) | M#, Nb | vA, ^G# |
16 | 780.3 | 533.3 | SM4/Sm5 | 11/7 (-2.2c); 39/25 (+10.4c) | ^M#, ^Nb | A |
17 | 829.0 | 566.7 | sA4/sM5 | 21/13 (-1.2c) | vN | ^A, vBb |
18 | 877.8 | 600 | A4/M5 | 91/55 (+6.1c); 5/3 (-6.5c); 81/49 (+7.7c) | N | Bb |
19 | 926.6 | 633.3 | SA4/SM5 | 77/45 (-3.3c) | ^N | ^Bb, vCb, Gx |
20 | 975.3 | 666.7 | sA5/sm6/sd7 | 135/77 (+3.3c) | vO | vA#, Cb |
21 | 1024.1 | 700 | A5/m6/d7 | 165/91 (-6.1c); 9/5 (+6.5c); 49/27 (-7.7c) | O | A#, ^Cb |
22 | 1072.9 | 733.3 | SA5/Sm6/Sd7 | 13/7 (+1.2c) | ^O | vB, ^A# |
23 | 1121.6 | 766.7 | sM6/sm7 | 21/11 (+2.2c); 25/13 (-10.4c) | vO#, vPb | B |
24 | 1170.4 | 800 | M6/m7 | 49/25 (+5.4c); 77/39 (-7.2c) | O#, Pb | ^B, vC |
25 | 1219.2 | 833.3 | SM6/Sm7 | 91/45 (+0.07c); 99/49 (+1.6c); 55/27 (-12.6c) | ^O#, ^Pb | C |
26 | 1267.9 | 866.7 | sA6/sM7/sd8 | 27/13 (+2.6c) | vP | ^C, vDb |
27 | 1316.7 | 900 | A6/M7/d8 | 15/7 (-2.7c) | P | Db, vB# |
28 | 1365.5 | 933.3 | SA6/SM7/Sd8 | 11/5 (+0.5c) | ^P | ^Db, B# |
29 | 1414.2 | 966.7 | sP8/sd9 | 147/65 (+1.5c); 25/11 (-7.0c) | vQ | vC#, ^B# |
30 | 1463.0 | 1000 | P8/d9 | 7/3 (-3.8c); 81/35 (+10.3c) | Q | C# |
31 | 1511.8 | 1033.3 | SP8/Sd9 | 117/49 (+5.0c); 65/27 (-9.2c) | ^Q | vD, ^C# |
32 | 1560.5 | 1066.7 | sA8/sm9 | 27/11 (+6.0c); 225/91 (+6.6c) | vQ#, vRb | D |
33 | 1609.3 | 1100 | A8/m9 | 195/77 (-0.7c); 33/13 (-3.4c); 63/25 (+9.2c) | Q#, Rb | ^D, vEb |
34 | 1658.1 | 1133.3 | SA8/Sm9 | 13/5 (+3.9c); 55/21 (-8.7c) | ^Q#, ^Rb | Eb |
35 | 1706.9 | 1166.7 | sM9/sd10 | 147/55 (+4.9c); 243/91 (+6.5c); 35/13 (-7.7c) | vR | ^Eb, vFb, Cx |
36 | 1755.7 | 1200 | M9/d10 | 91/33 (+0.4c); 135/49 (+1.1c); 25/9 (-13.1c) | R | vD#, Fb |
37 | 1804.5 | 1233.3 | SM9/Sd10 | 99/35 (+4.3c); 77/27 (-9.9c) | ^R | D#, ^Fb |
38 | 1853.2 | 1266.7 | sA9/sP10 | 225/77 (-3.2c); 189/65 (+5.3c) | vJ | vE, ^D# |
39 | 1902.0 | 1300 | A9/P10 | 3/1 | J | E |