2L 5s (3/1-equivalent)
↖ 1L 4s⟨3/1⟩ | ↑ 2L 4s⟨3/1⟩ | 3L 4s⟨3/1⟩ ↗ |
← 1L 5s⟨3/1⟩ | 2L 5s (3/1-equivalent) | 3L 5s⟨3/1⟩ → |
↙ 1L 6s⟨3/1⟩ | ↓ 2L 6s⟨3/1⟩ | 3L 6s⟨3/1⟩ ↘ |
┌╥┬┬╥┬┬┬┐ │║││║││││ │││││││││ └┴┴┴┴┴┴┴┘
Scale structure
sssLssL
Generator size(edt)
Related MOS scales
Equal tunings(edt)
2L 5s⟨3/1⟩, also called antitriatonic, is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 2 large steps and 5 small steps, repeating every interval of 3/1 (1902.0 ¢). Generators that produce this scale range from 815.1 ¢ to 951 ¢, or from 951 ¢ to 1086.8 ¢.
Name
The name antitriatonic[idiosyncratic term] was coined by ArrowHead294, as a back-formation from "diatonic" with di- being interpreted as 2 (the octave) and tri- being interpreted as 3 (the tritave), while the "anti-" prefix is used in the same way that the octave-equivalent 2L 5s scale is called the "antidiatonic" scale, though it is not an official name in TAMNAMS.
Theory
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 271.7 ¢ |
Major 1-mosstep | M1ms | L | 271.7 ¢ to 951.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 543.4 ¢ |
Major 2-mosstep | M2ms | L + s | 543.4 ¢ to 951.0 ¢ | |
3-mosstep | Diminished 3-mosstep | d3ms | 3s | 0.0 ¢ to 815.1 ¢ |
Perfect 3-mosstep | P3ms | L + 2s | 815.1 ¢ to 951.0 ¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | L + 3s | 951.0 ¢ to 1086.8 ¢ |
Augmented 4-mosstep | A4ms | 2L + 2s | 1086.8 ¢ to 1902.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 951.0 ¢ to 1358.5 ¢ |
Major 5-mosstep | M5ms | 2L + 3s | 1358.5 ¢ to 1902.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | L + 5s | 951.0 ¢ to 1630.2 ¢ |
Major 6-mosstep | M6ms | 2L + 4s | 1630.2 ¢ to 1902.0 ¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 2L + 5s | 1902.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
8 | Augmented 3-mosdegree | A3md |
7 | Augmented 0-mosdegree | A0md |
6 | Augmented 4-mosdegree | A4md |
5 | Major 1-mosdegree | M1md |
4 | Major 5-mosdegree | M5md |
3 | Major 2-mosdegree | M2md |
2 | Major 6-mosdegree | M6md |
1 | Perfect 3-mosdegree | P3md |
0 | Perfect 0-mosdegree Perfect 7-mosdegree |
P0md P7md |
−1 | Perfect 4-mosdegree | P4md |
−2 | Minor 1-mosdegree | m1md |
−3 | Minor 5-mosdegree | m5md |
−4 | Minor 2-mosdegree | m2md |
−5 | Minor 6-mosdegree | m6md |
−6 | Diminished 3-mosdegree | d3md |
−7 | Diminished 7-mosdegree | d7md |
−8 | Diminished 4-mosdegree | d4md |
Temperament interpretations
Scale tree
Generator(edt) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
3\7 | 815.124 | 1086.831 | 1:1 | 1.000 | Equalized 2L 5s⟨3/1⟩ | |||||
16\37 | 822.467 | 1079.488 | 6:5 | 1.200 | ||||||
13\30 | 824.181 | 1077.775 | 5:4 | 1.250 | ||||||
23\53 | 825.377 | 1076.578 | 9:7 | 1.286 | ||||||
10\23 | 826.937 | 1075.018 | 4:3 | 1.333 | Supersoft 2L 5s⟨3/1⟩ | |||||
27\62 | 828.271 | 1073.684 | 11:8 | 1.375 | ||||||
17\39 | 829.057 | 1072.898 | 7:5 | 1.400 | ||||||
24\55 | 829.944 | 1072.011 | 10:7 | 1.429 | ||||||
7\16 | 832.105 | 1069.850 | 3:2 | 1.500 | Soft 2L 5s⟨3/1⟩ | |||||
25\57 | 834.191 | 1067.764 | 11:7 | 1.571 | ||||||
18\41 | 835.005 | 1066.950 | 8:5 | 1.600 | ||||||
29\66 | 835.708 | 1066.248 | 13:8 | 1.625 | ||||||
11\25 | 836.860 | 1065.095 | 5:3 | 1.667 | Semisoft 2L 5s⟨3/1⟩ | |||||
26\59 | 838.150 | 1063.805 | 12:7 | 1.714 | ||||||
15\34 | 839.098 | 1062.857 | 7:4 | 1.750 | ||||||
19\43 | 840.399 | 1061.556 | 9:5 | 1.800 | ||||||
4\9 | 845.313 | 1056.642 | 2:1 | 2.000 | Basic 2L 5s⟨3/1⟩ Scales with tunings softer than this are proper | |||||
17\38 | 850.875 | 1051.080 | 9:4 | 2.250 | ||||||
13\29 | 852.601 | 1049.354 | 7:3 | 2.333 | ||||||
22\49 | 853.939 | 1048.016 | 12:5 | 2.400 | ||||||
9\20 | 855.880 | 1046.075 | 5:2 | 2.500 | Semihard 2L 5s⟨3/1⟩ | |||||
23\51 | 857.744 | 1044.211 | 13:5 | 2.600 | ||||||
14\31 | 858.947 | 1043.008 | 8:3 | 2.667 | ||||||
19\42 | 860.408 | 1041.547 | 11:4 | 2.750 | ||||||
5\11 | 864.525 | 1037.430 | 3:1 | 3.000 | Hard 2L 5s⟨3/1⟩ | |||||
16\35 | 869.465 | 1032.490 | 10:3 | 3.333 | ||||||
11\24 | 871.729 | 1030.226 | 7:2 | 3.500 | ||||||
17\37 | 873.871 | 1028.084 | 11:3 | 3.667 | ||||||
6\13 | 877.825 | 1024.130 | 4:1 | 4.000 | Superhard 2L 5s⟨3/1⟩ | |||||
13\28 | 883.051 | 1018.904 | 9:2 | 4.500 | ||||||
7\15 | 887.579 | 1014.376 | 5:1 | 5.000 | ||||||
8\17 | 895.038 | 1006.917 | 6:1 | 6.000 | ||||||
1\2 | 950.978 | 950.978 | 1:0 | → ∞ | Collapsed 2L 5s⟨3/1⟩ |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |