Table of 159edo Intervals

From Xenharmonic Wiki
Revision as of 17:26, 29 December 2020 by Aura (talk | contribs) (added two more intervals to the list)
Jump to navigation Jump to search

This table of 159edo intervals assumes 17-limit patent val 159 252 369 446 550 588 650].

Intervals highlighted in bold are prime harmonics or subharmonics, while other well-known intervals will likely have links to their respective pages. In addition, intervals that differ from assigned steps by more than 50%, multiples of such intervals, and intervals of odd limit higher than 1024, are not shown. Furthermore, when multiple well-known intervals for a given prime-limit share a step size, they may share a cell in the chart; conversely, a "?" in the chart means that no known interval meets the criteria for inclusion. Note that no 5-limit intervals can be represented by degrees other than multiples of 3, so those entries are left blank.

Step Cents 5 limit 7 limit 11 limit 13 limit 17 limit
0 0 1/1
1 7.5471698 225/224 243/242 196/195, 351/350 256/255
2 15.0943396 ? 121/120, 100/99 144/143 120/119
3 22.6415094 81/80 ? ? 78/77 85/84
4 30.1886792 64/63 56/55, 55/54 ? 52/51
5 37.7358491 ? 45/44 ? 51/50
6 45.2830189 ? ? ? 40/39 192/187
7 52.8301887 ? 33/32 ? 34/33
8 60.3773585 28/27 ? ? 88/85
9 67.9245283 25/24 ? ? 26/25, 27/26 ?
10 75.4716981 ? ? ? 160/153
11 83.0188679 21/20 22/21 ? ?
12 90.5660377 256/243, 135/128 ? ? ? ?
13 98.1132075 ? 128/121 55/52 18/17
14 105.6603774 ? ? ? 17/16
15 113.2075472 16/15 ? ? ? ?
16 120.7547170 15/14 275/256 ? ?
17 128.3018868 ? ? 14/13 128/119
18 135.8490566 27/25 ? ? 13/12 ?
19 143.3962264 ? 88/81 ? ?
20 150.9433962 ? 12/11 ? ?
21 158.4905660 ? ? ? 128/117 561/512, 1024/935
22 166.0377358 ? 11/10 ? ?
23 173.5849057 567/512 243/220 ? 425/384
24 181.1320755 10/9 ? 256/231 ? ?
25 188.6792458 ? ? 143/128 512/459
26 196.2264151 28/25 ? ? ?
27 203.7735849 9/8 ? ? ? ?
28 211.3207547 ? ? 44/39 289/256
29 218.8679245 ? ? ? 17/15
30 226.4150943 256/225 ? 154/135 ? ?
31 233.9622642 8/7 55/48 ? ?
32 241.5094340 ? 1024/891 ? ?
33 249.0566038 ? ? ? 15/13 ?
34 256.6037736 ? 297/256 ? ?
35 264.1509434 7/6 64/55 ? ?
36 271.6981132 75/64 ? ? ? ?
37 279.2452830 ? ? ? 20/17
38 286.7924528 ? 33/28 13/11 85/72
39 294.3396226 32/27 ? ? ? ?
40 301.8867925 25/21 ? ? ?
41 309.4339622 ? ? 512/429 153/128
42 316.9811321 6/5 ? 77/64 ? ?
43 324.5283019 135/112 ? ? 512/425
44 332.0754717 ? 40/33, 121/100 ? 144/119, 165/136
45 339.6226415 ? ? ? 39/32 ?
46 347.1698113 ? 11/9 ? ?
47 354.7169811 ? 27/22 ? ?
48 362.2641509 ? ? ? 16/13 ?
49 369.8113208 ? ? ? 68/55
50 377.3584906 56/45 1024/825 ? ?
51 384.9056604 5/4 ? 96/77 ? ?
52 392.4528302 ? ? ? 64/51
53 400 63/50 ? ? ?
54 407.5471698 81/64 ? ? ? ?
55 415.0943396 ? 14/11 33/26 108/85
56 422.6415094 ? ? ? 51/40
57 430.1886792 32/25 ? ? ? ?
58 437.7358491 9/7 165/128 ? ?
59 445.2830189 ? 128/99 ? 22/17
60 452.8301887 ? ? ? 13/10 ?
61 460.3773585 ? 176/135 ? ?
62 467.9245283 21/16 55/42, 72/55 ? 17/13
63 475.4716981 320/243, 675/512 ? ? ? ?
64 483.0188679 ? 33/25 ? 45/34
65 490.5660377 ? ? ? 85/64
66 498.1132075 4/3 ? ? ? ?
67 505.6603774 75/56 ? ? ?
68 513.2075472 ? 121/90 ? ?
69 520.7547170 27/20 ? ? 104/77 ?
70 528.3018868 ? 110/81 ? ?
71 535.8490566 ? 15/11 ? ?
72 543.3962264 ? ? ? ? 256/187
73 550.9433962 ? 11/8 ? ?
74 558.4905660 112/81 ? ? ?
75 566.0377358 25/18 ? ? 18/13 ?
76 573.5849057 ? ? ? 357/256
77 581.1320755 7/5 ? ? ?
78 588.6792458 1024/729, 45/32 ? ? ? ?
79 596.2264151 ? ? ? 24/17
80 603.7735849 ? ? ? 17/12
81 611.3207547 729/512, 64/45 ? ? ? ?
82 618.8679245 10/7 ? ? ?
83 626.4150943 ? ? ? 512/357
84 633.9622642 36/25 ? ? 13/9 ?
85 641.5094340 81/56 ? ? ?
86 649.0566038 ? 16/11 ? ?
87 656.6037736 ? ? ? ? 187/128
88 664.1509434 ? 22/15 ? ?
89 671.6981132 ? 81/55 ? ?
90 679.2452830 40/27 ? ? 77/52 ?
91 686.7924528 ? 180/121 ? ?
92 694.3396226 112/75 ? ? ?
93 701.8867925 3/2 ? ? ? ?
94 709.4339622 ? ? ? 128/85
95 716.9811321 ? 50/33 ? 68/45
96 724.5283019 243/160, 1024/675 ? ? ? ?
97 732.0754717 32/21 84/55, 55/36 ? 26/17
98 739.6226415 ? 135/88 ? ?
99 747.1698113 ? ? ? 20/13 ?
100 754.7169811 ? 99/64 ? 17/11
101 762.2641509 14/9 256/165 ? ?
102 769.8113208 25/16 ? ? ? ?
103 777.3584906 ? ? ? 80/51
104 784.9056604 ? 11/7 52/33 85/54
105 792.4528302 128/81 ? ? ? ?
106 800 100/63 ? ? ?
107 807.5471698 ? ? ? 51/32
108 815.0943396 8/5 ? 77/48 ? ?
109 822.6415094 45/28 825/512 ? ?
110 830.1886792 ? ? ? 55/34
111 837.7358491 ? ? ? 13/8 ?
112 845.2830189 ? 44/27 ? ?
113 852.8301887 ? 18/11 ? ?
114 860.3773585 ? ? ? 64/39 ?
115 867.9245283 ? 33/20, 200/121 ? 119/72, 272/165
116 875.4716981 224/135 ? ? 425/256
117 883.0188679 5/3 ? 128/77 ? ?
118 890.5660377 ? ? 429/256 256/153
119 898.1132075 42/25 ? ? ?
120 905.6603774 27/16 ? ? ? ?
121 913.2075472 ? 56/33 22/13 144/85
122 920.7547170 ? ? ? 17/10
123 928.3018868 128/75 ? ? ? ?
124 935.8490566 12/7 55/32 ? ?
125 943.3962264 ? 512/297 ? ?
126 950.9433962 ? ? ? 26/15 ?
127 958.4905660 ? 891/512 ? ?
128 966.0377358 7/4 96/55 ? ?
129 973.5849057 225/128 ? 135/77 ? ?
130 981.1320755 ? ? ? 30/17
131 988.6792458 ? ? 39/22 512/289
132 996.2264151 16/9 ? ? ? ?
133 1003.7735849 25/14 ? ? ?
134 1011.3207547 ? ? 256/143 459/256
135 1018.8679245 9/5 ? 231/128 ? ?
136 1026.4150943 1024/567 440/243 ? 768/425
137 1033.9622642 ? 20/11 ? ?
138 1041.5094340 ? ? ? 117/64 1024/561, 935/512
139 1049.0566038 ? 11/6 ? ?
140 1056.6037736 ? 81/44 ? ?
141 1064.1509434 50/27 ? ? 24/13 ?
142 1071.6981132 ? ? 13/7 119/64
143 1079.2452830 28/15 512/275 ? ?
144 1086.7924528 15/8 ? ? ? ?
145 1094.3396226 ? ? ? 32/17
146 1101.8867925 ? 121/64 104/55 17/9
147 1109.4339622 243/128, 256/135 ? ? ? ?
148 1116.9811321 40/21 21/11 ? ?
149 1124.5283019 ? ? ? 153/80
150 1132.0754717 48/25 ? ? 25/13, 52/27 ?
151 1139.6226415 27/14 ? ? 85/44
152 1147.1698113 ? 64/33 ? 33/17
153 1154.7169811 ? ? ? 39/20 187/96
154 1162.2641509 ? 88/45 ? 100/51
155 1169.8113208 63/32 55/28, 108/55 ? 51/26
156 1177.3584906 160/81 ? ? 77/39 168/85
157 1184.9056604 ? 240/121, 99/50 143/72 119/60
158 1192.4528302 448/225 484/243 195/98, 700/351 255/128
159 1200 2/1