Table of 159edo Intervals: Difference between revisions
No edit summary |
intro with link to 159edo |
||
Line 1: | Line 1: | ||
This table assumes 17-limit patent val <159 252 369 446 550 588 650|. Intervals highlighted in '''bold''' are prime harmonics or subharmonics, while other well-known intervals will likely have links to their respective pages. In addition, intervals that differ from the nearest step by more than 3.5 cents will be in ''italics'', while intervals that differ from assigned steps by a rate of 50% or more, multiples of such intervals, or else, intervals that have an odd limit higher than 1024, will not be included in the chart at all. Furthermore, when multiple well-known intervals for a given prime-limit share a step size, they may share a cell in the chart; conversely, a "?" in the chart means that no known interval meets the criteria for inclusion. | This '''table of [[159edo]] intervals''' assumes 17-limit patent val <159 252 369 446 550 588 650|. Intervals highlighted in '''bold''' are prime harmonics or subharmonics, while other well-known intervals will likely have links to their respective pages. In addition, intervals that differ from the nearest step by more than 3.5 cents will be in ''italics'', while intervals that differ from assigned steps by a rate of 50% or more, multiples of such intervals, or else, intervals that have an odd limit higher than 1024, will not be included in the chart at all. Furthermore, when multiple well-known intervals for a given prime-limit share a step size, they may share a cell in the chart; conversely, a "?" in the chart means that no known interval meets the criteria for inclusion. | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- |
Revision as of 10:02, 9 October 2020
This table of 159edo intervals assumes 17-limit patent val <159 252 369 446 550 588 650|. Intervals highlighted in bold are prime harmonics or subharmonics, while other well-known intervals will likely have links to their respective pages. In addition, intervals that differ from the nearest step by more than 3.5 cents will be in italics, while intervals that differ from assigned steps by a rate of 50% or more, multiples of such intervals, or else, intervals that have an odd limit higher than 1024, will not be included in the chart at all. Furthermore, when multiple well-known intervals for a given prime-limit share a step size, they may share a cell in the chart; conversely, a "?" in the chart means that no known interval meets the criteria for inclusion.
Step | Cents | 5 limit | 7 limit | 11 limit | 13 limit | 17 limit |
---|---|---|---|---|---|---|
0 | 0 | 1/1 | ||||
1 | 7.5471698 | ? | 225/224 | 243/242 | 351/350 | 256/255 |
2 | 15.0943396 | ? | ? | 121/120, 100/99 | 144/143 | 120/119 |
3 | 22.6415094 | 81/80 | ? | ? | 78/77 | 85/84 |
4 | 30.1886792 | ? | 64/63 | 56/55, 55/54 | ? | 52/51 |
5 | 37.7358491 | ? | ? | 45/44 | ? | 51/50 |
6 | 45.2830189 | ? | ? | ? | 40/39 | 192/187 |
7 | 52.8301887 | ? | ? | 33/32 | ? | 34/33 |
8 | 60.3773585 | ? | 28/27 | ? | ? | 88/85 |
9 | 67.9245283 | 25/24 | ? | ? | 26/25, 27/26 | ? |
10 | 75.4716981 | ? | ? | ? | ? | 160/153 |
11 | 83.0188679 | ? | 21/20 | 22/21 | ? | ? |
12 | 90.5660377 | 256/243, 135/128 | ? | ? | ? | ? |
13 | 98.1132075 | ? | ? | 128/121 | ? | 18/17 |
14 | 105.6603774 | ? | ? | ? | ? | 17/16 |
15 | 113.2075472 | 16/15 | ? | ? | ? | ? |
16 | 120.7547170 | ? | 15/14 | 275/256 | ? | ? |
17 | 128.3018868 | ? | ? | ? | 14/13 | 128/119 |
18 | 135.8490566 | 27/25 | ? | ? | 13/12 | ? |
19 | 143.3962264 | ? | ? | 88/81 | ? | ? |
20 | 150.9433962 | ? | ? | 12/11 | ? | ? |
21 | 158.4905660 | ? | ? | ? | 128/117 | 561/512, 1024/935 |
22 | 166.0377358 | ? | ? | 11/10 | ? | ? |
23 | 173.5849057 | ? | 567/512 | 243/220 | ? | 425/384 |
24 | 181.1320755 | 10/9 | ? | 256/231 | ? | ? |
25 | 188.6792458 | ? | ? | ? | 143/128 | 512/459 |
26 | 196.2264151 | ? | 28/25 | ? | ? | ? |
27 | 203.7735849 | 9/8 | ? | ? | ? | ? |
28 | 211.3207547 | ? | ? | ? | ? | 289/256 |
29 | 218.8679245 | ? | ? | ? | ? | 17/15 |
30 | 226.4150943 | 256/225 | ? | ? | ? | ? |
31 | 233.9622642 | ? | 8/7 | 55/48 | ? | ? |
32 | 241.5094340 | ? | ? | 1024/891 | ? | ? |
33 | 249.0566038 | ? | ? | ? | 15/13 | ? |
34 | 256.6037736 | ? | ? | 297/256 | ? | ? |
35 | 264.1509434 | ? | 7/6 | 64/55 | ? | ? |
36 | 271.6981132 | 75/64 | ? | ? | ? | ? |
37 | 279.2452830 | ? | ? | ? | ? | 20/17 |
38 | 286.7924528 | ? | ? | 33/28 | 13/11 | 85/72 |
39 | 294.3396226 | 32/27 | ? | ? | ? | ? |
40 | 301.8867925 | ? | 25/21 | ? | ? | ? |
41 | 309.4339622 | ? | ? | ? | 512/429 | 153/128 |
42 | 316.9811321 | 6/5 | ? | 77/64 | ? | ? |
43 | 324.5283019 | ? | ? | ? | ? | 512/425 |
44 | 332.0754717 | ? | ? | ? | ? | 144/119, 165/136 |
45 | 339.6226415 | ? | ? | ? | 39/32 | ? |
46 | 347.1698113 | ? | ? | 11/9 | ? | ? |
47 | 354.7169811 | ? | ? | 27/22 | ? | ? |
48 | 362.2641509 | ? | ? | ? | 16/13 | ? |
49 | 369.8113208 | ? | ? | ? | ? | 68/55 |
50 | 377.3584906 | ? | ? | 1024/825 | ? | ? |
51 | 384.9056604 | 5/4 | ? | 96/77 | ? | ? |
52 | 392.4528302 | ? | ? | ? | ? | 64/51 |
53 | 400 | ? | 63/50 | ? | ? | ? |
54 | 407.5471698 | 81/64 | ? | ? | ? | ? |
55 | 415.0943396 | ? | ? | 14/11 | 33/26 | 108/85 |
56 | 422.6415094 | ? | ? | ? | ? | 51/40 |
57 | 430.1886792 | 32/25 | ? | ? | ? | ? |
58 | 437.7358491 | ? | 9/7 | 165/128 | ? | ? |
59 | 445.2830189 | ? | ? | 128/99 | ? | ? |
60 | 452.8301887 | ? | ? | ? | 13/10 | ? |
61 | 460.3773585 | ? | ? | 176/135 | ? | ? |
62 | 467.9245283 | ? | 21/16 | ? | ? | ? |
63 | 475.4716981 | 320/243, 675/512 | ? | ? | ? | ? |
64 | 483.0188679 | ? | ? | 33/25 | ? | 45/34 |
65 | 490.5660377 | ? | ? | ? | ? | 85/64 |
66 | 498.1132075 | 4/3 | ? | ? | ? | ? |
67 | 505.6603774 | ? | 75/56 | ? | ? | ? |
68 | 513.2075472 | ? | ? | 121/90 | ? | ? |
69 | 520.7547170 | 27/20 | ? | ? | ? | ? |
70 | 528.3018868 | ? | ? | 110/81 | ? | ? |
71 | 535.8490566 | ? | ? | 15/11 | ? | ? |
72 | 543.3962264 | ? | ? | ? | ? | 256/187 |
73 | 550.9433962 | ? | ? | 11/8 | ? | ? |
74 | 558.4905660 | ? | 112/81 | ? | ? | ? |
75 | 566.0377358 | 25/18 | ? | ? | ? | ? |
76 | 573.5849057 | ? | ? | ? | ? | 357/256 |
77 | 581.1320755 | ? | 7/5 | ? | ? | ? |
78 | 588.6792458 | 1024/729, 45/32 | ? | ? | ? | ? |
79 | 596.2264151 | ? | ? | ? | ? | 24/17 |
80 | 603.7735849 | ? | ? | ? | ? | 17/12 |
81 | 611.3207547 | 729/512, 64/45 | ? | ? | ? | ? |
82 | 618.8679245 | ? | 10/7 | ? | ? | ? |
83 | 626.4150943 | ? | ? | ? | ? | 512/357 |
84 | 633.9622642 | 36/25 | ? | ? | ? | ? |
85 | 641.5094340 | ? | 81/56 | ? | ? | ? |
86 | 649.0566038 | ? | ? | 16/11 | ? | ? |
87 | 656.6037736 | ? | ? | ? | ? | 187/128 |
88 | 664.1509434 | ? | ? | 22/15 | ? | ? |
89 | 671.6981132 | ? | ? | 81/55 | ? | ? |
90 | 679.2452830 | 40/27 | ? | ? | ? | ? |
91 | 686.7924528 | ? | ? | 180/121 | ? | ? |
92 | 694.3396226 | ? | 112/75 | ? | ? | ? |
93 | 701.8867925 | 3/2 | ? | ? | ? | ? |
94 | 709.4339622 | ? | ? | ? | ? | 128/85 |
95 | 716.9811321 | ? | ? | 50/33 | ? | 68/45 |
96 | 724.5283019 | 243/160, 1024/675 | ? | ? | ? | ? |
97 | 732.0754717 | ? | 32/21 | ? | ? | ? |
98 | 739.6226415 | ? | ? | 135/88 | ? | ? |
99 | 747.1698113 | ? | ? | ? | 20/13 | ? |
100 | 754.7169811 | ? | ? | 99/64 | ? | ? |
101 | 762.2641509 | ? | 14/9 | 256/165 | ? | ? |
102 | 769.8113208 | 25/16 | ? | ? | ? | ? |
103 | 777.3584906 | ? | ? | ? | ? | 80/51 |
104 | 784.9056604 | ? | ? | 11/7 | 52/33 | 85/54 |
105 | 792.4528302 | 128/81 | ? | ? | ? | ? |
106 | 800 | ? | 100/63 | ? | ? | ? |
107 | 807.5471698 | ? | ? | ? | ? | 51/32 |
108 | 815.0943396 | 8/5 | ? | 77/48 | ? | ? |
109 | 822.6415094 | ? | ? | 825/512 | ? | ? |
110 | 830.1886792 | ? | ? | ? | ? | 55/34 |
111 | 837.7358491 | ? | ? | ? | 13/8 | ? |
112 | 845.2830189 | ? | ? | 44/27 | ? | ? |
113 | 852.8301887 | ? | ? | 18/11 | ? | ? |
114 | 860.3773585 | ? | ? | ? | 64/39 | ? |
115 | 867.9245283 | ? | ? | ? | ? | 119/72, 272/165 |
116 | 875.4716981 | ? | ? | ? | ? | 425/256 |
117 | 883.0188679 | 5/3 | ? | 128/77 | ? | ? |
118 | 890.5660377 | ? | ? | ? | 429/256 | 256/153 |
119 | 898.1132075 | ? | 42/25 | ? | ? | ? |
120 | 905.6603774 | 27/16 | ? | ? | ? | ? |
121 | 913.2075472 | ? | ? | 56/33 | 22/13 | 144/85 |
122 | 920.7547170 | ? | ? | ? | ? | 17/10 |
123 | 928.3018868 | 128/75 | ? | ? | ? | ? |
124 | 935.8490566 | ? | 12/7 | 55/32 | ? | ? |
125 | 943.3962264 | ? | ? | 512/297 | ? | ? |
126 | 950.9433962 | ? | ? | ? | 26/15 | ? |
127 | 958.4905660 | ? | ? | 891/512 | ? | ? |
128 | 966.0377358 | ? | 7/4 | 96/55 | ? | ? |
129 | 973.5849057 | 225/128 | ? | ? | ? | ? |
130 | 981.1320755 | ? | ? | ? | ? | 30/17 |
131 | 988.6792458 | ? | ? | ? | ? | 512/289 |
132 | 996.2264151 | 16/9 | ? | ? | ? | ? |
133 | 1003.7735849 | ? | 25/14 | ? | ? | ? |
134 | 1011.3207547 | ? | ? | ? | 256/143 | 459/256 |
135 | 1018.8679245 | 9/5 | ? | 231/128 | ? | ? |
136 | 1026.4150943 | ? | 1024/567 | 440/243 | ? | 768/425 |
137 | 1033.9622642 | ? | ? | 20/11 | ? | ? |
138 | 1041.5094340 | ? | ? | ? | 117/64 | 1024/561, 935/512 |
139 | 1049.0566038 | ? | ? | 11/6 | ? | ? |
140 | 1056.6037736 | ? | ? | 81/44 | ? | ? |
141 | 1064.1509434 | 50/27 | ? | ? | 24/13 | ? |
142 | 1071.6981132 | ? | ? | ? | 13/7 | 119/64 |
143 | 1079.2452830 | ? | 28/15 | 512/275 | ? | ? |
144 | 1086.7924528 | 15/8 | ? | ? | ? | ? |
145 | 1094.3396226 | ? | ? | ? | ? | 32/17 |
146 | 1101.8867925 | ? | ? | 121/64 | ? | 17/9 |
147 | 1109.4339622 | 243/128, 256/135 | ? | ? | ? | ? |
148 | 1116.9811321 | ? | 40/21 | 21/11 | ? | ? |
149 | 1124.5283019 | ? | ? | ? | ? | 153/80 |
150 | 1132.0754717 | 48/25 | ? | ? | 25/13, 52/27 | ? |
151 | 1139.6226415 | ? | 27/14 | ? | ? | 85/44 |
152 | 1147.1698113 | ? | ? | 64/33 | ? | 33/17 |
153 | 1154.7169811 | ? | ? | ? | 39/20 | 187/96 |
154 | 1162.2641509 | ? | ? | 88/45 | ? | 100/51 |
155 | 1169.8113208 | ? | 63/32 | 55/28, 108/55 | ? | 51/26 |
156 | 1177.3584906 | 160/81 | ? | ? | 77/39 | 168/85 |
157 | 1184.9056604 | ? | ? | 240/121, 99/50 | 143/72 | 119/60 |
158 | 1192.4528302 | ? | 448/225 | 484/243 | 700/351 | 255/128 |
159 | 1200 | 2/1 |