12L 5s: Difference between revisions
→Scale tree: leapday is optimal around 46edo. Misc. cleanup |
→Scale tree: +gracecordial |
||
Line 36: | Line 36: | ||
9/2: [[Pontiac]]; | 9/2: [[Pontiac]]; | ||
5/1: [[Photia]]; | 5/1: [[Photia]]; | ||
6/1: ↓ [[Grackle]] | 6/1: ↓ [[Grackle]], ↓↓ [[gracecordial]]; | ||
}} | }} | ||
[[Category:17-tone scales]] | [[Category:17-tone scales]] | ||
[[Category:Mega chromatic scales]] | [[Category:Mega chromatic scales]] |
Revision as of 14:18, 2 December 2024
↖ 11L 4s | ↑ 12L 4s | 13L 4s ↗ |
← 11L 5s | 12L 5s | 13L 5s → |
↙ 11L 6s | ↓ 12L 6s | 13L 6s ↘ |
┌╥╥╥┬╥╥┬╥╥╥┬╥╥┬╥╥┬┐ │║║║│║║│║║║│║║│║║││ │││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLsLLsLLLsLLsLLL
12L 5s, also called p-enharmonic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 12 large steps and 5 small steps, repeating every octave. 12L 5s is a grandchild scale of 5L 2s, expanding it by 10 tones. Generators that produce this scale range from 494.1 ¢ to 500 ¢, or from 700 ¢ to 705.9 ¢. Temperaments supported by this scale include those under the Pythagorean and schismic families, characterized by a diesis (the difference between a large step and two small steps) that is smaller than the chroma.
The leapday/leapweek version is proper, but the Pythagorean/schismic version is improper (it does not become proper until you add 12 more notes to form the schismic 29-note scale).
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 70.6 ¢ |
Major 1-mosstep | M1ms | L | 70.6 ¢ to 100.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 100.0 ¢ to 141.2 ¢ |
Major 2-mosstep | M2ms | 2L | 141.2 ¢ to 200.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 200.0 ¢ to 211.8 ¢ |
Major 3-mosstep | M3ms | 3L | 211.8 ¢ to 300.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 200.0 ¢ to 282.4 ¢ |
Major 4-mosstep | M4ms | 3L + s | 282.4 ¢ to 300.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 300.0 ¢ to 352.9 ¢ |
Major 5-mosstep | M5ms | 4L + s | 352.9 ¢ to 400.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 400.0 ¢ to 423.5 ¢ |
Major 6-mosstep | M6ms | 5L + s | 423.5 ¢ to 500.0 ¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 4L + 3s | 400.0 ¢ to 494.1 ¢ |
Perfect 7-mosstep | P7ms | 5L + 2s | 494.1 ¢ to 500.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 5L + 3s | 500.0 ¢ to 564.7 ¢ |
Major 8-mosstep | M8ms | 6L + 2s | 564.7 ¢ to 600.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 6L + 3s | 600.0 ¢ to 635.3 ¢ |
Major 9-mosstep | M9ms | 7L + 2s | 635.3 ¢ to 700.0 ¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 7L + 3s | 700.0 ¢ to 705.9 ¢ |
Augmented 10-mosstep | A10ms | 8L + 2s | 705.9 ¢ to 800.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 7L + 4s | 700.0 ¢ to 776.5 ¢ |
Major 11-mosstep | M11ms | 8L + 3s | 776.5 ¢ to 800.0 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 8L + 4s | 800.0 ¢ to 847.1 ¢ |
Major 12-mosstep | M12ms | 9L + 3s | 847.1 ¢ to 900.0 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 9L + 4s | 900.0 ¢ to 917.6 ¢ |
Major 13-mosstep | M13ms | 10L + 3s | 917.6 ¢ to 1000.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 9L + 5s | 900.0 ¢ to 988.2 ¢ |
Major 14-mosstep | M14ms | 10L + 4s | 988.2 ¢ to 1000.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 10L + 5s | 1000.0 ¢ to 1058.8 ¢ |
Major 15-mosstep | M15ms | 11L + 4s | 1058.8 ¢ to 1100.0 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 11L + 5s | 1100.0 ¢ to 1129.4 ¢ |
Major 16-mosstep | M16ms | 12L + 4s | 1129.4 ¢ to 1200.0 ¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 12L + 5s | 1200.0 ¢ |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |||
16|0 | 1 | LLLsLLsLLLsLLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
15|1 | 8 | LLLsLLsLLsLLLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
14|2 | 15 | LLsLLLsLLsLLLsLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
13|3 | 5 | LLsLLLsLLsLLsLLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. |
12|4 | 12 | LLsLLsLLLsLLsLLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. |
11|5 | 2 | LLsLLsLLLsLLsLLsL | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
10|6 | 9 | LLsLLsLLsLLLsLLsL | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
9|7 | 16 | LsLLLsLLsLLLsLLsL | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
8|8 | 6 | LsLLLsLLsLLsLLLsL | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. |
7|9 | 13 | LsLLsLLLsLLsLLLsL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. |
6|10 | 3 | LsLLsLLLsLLsLLsLL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
5|11 | 10 | LsLLsLLsLLLsLLsLL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
4|12 | 17 | sLLLsLLsLLLsLLsLL | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
3|13 | 7 | sLLLsLLsLLsLLLsLL | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
2|14 | 14 | sLLsLLLsLLsLLLsLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
1|15 | 4 | sLLsLLLsLLsLLsLLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
0|16 | 11 | sLLsLLsLLLsLLsLLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
Proposed tuning-specific names
Declan Paul Boushy has proposed names for these modes corresponding to step ratios 3:1 and 4:1.
Scales
- Edson17 – 29edo tuning
- Subaru scale – 41edo tuning
- Cotoneum17 – 217edo tuning
- Garibaldi17 – 94edo tuning
- Pythagorean17 – Pythagorean tuning
- Tanegashima scale – 53edo tuning
- Nestoria17 – 171edo tuning