152edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Note: 15-integer-limit consistency, 11-, 19- and 23-limit excellency. -redundant category; +category.
ArrowHead294 (talk | contribs)
mNo edit summary
Line 16: Line 16:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
| {{monzo| 241 -152 }}
| {{monzo| 241 -152 }}
| {{mapping| 152 241 }}
| {{mapping| 152 241 }}
| -0.213
| &minus;0.213
| 0.213
| 0.213
| 2.70
| 2.70
Line 36: Line 28:
| 1600000/1594323, {{monzo| 32 -7 -9 }}
| 1600000/1594323, {{monzo| 32 -7 -9 }}
| {{mapping| 152 241 353 }}
| {{mapping| 152 241 353 }}
| -0.218
| &minus;0.218
| 0.174
| 0.174
| 2.21
| 2.21
Line 43: Line 35:
| 4375/4374, 5120/5103, 16875/16807
| 4375/4374, 5120/5103, 16875/16807
| {{mapping| 152 241 353 427 }}
| {{mapping| 152 241 353 427 }}
| -0.362
| &minus;0.362
| 0.291
| 0.291
| 3.69
| 3.69
Line 50: Line 42:
| 540/539, 1375/1372, 4000/3993, 5120/5103
| 540/539, 1375/1372, 4000/3993, 5120/5103
| {{mapping| 152 241 353 427 526 }}
| {{mapping| 152 241 353 427 526 }}
| -0.365
| &minus;0.365
| 0.260
| 0.260
| 3.30
| 3.30
Line 57: Line 49:
| 352/351, 540/539, 625/624, 729/728, 1575/1573
| 352/351, 540/539, 625/624, 729/728, 1575/1573
| {{mapping| 152 241 353 427 526 563 }} (152f)
| {{mapping| 152 241 353 427 526 563 }} (152f)
| -0.494
| &minus;0.494
| 0.373
| 0.373
| 4.73
| 4.73
|}
{{comma basis end}}
* 152et (152fg val) has lower absolute errors in the 11-, 19-, and 23-limit than any previous equal temperaments. In the 11-limit it is the first to beat [[130edo|130]] and is superseded by [[224edo|224]]. In the 19- and 23-limit it is the first to beat [[140edo|140]] and is superseded by [[159edo|159]].  
* 152et (152fg val) has lower absolute errors in the 11-, 19-, and 23-limit than any previous equal temperaments. In the 11-limit it is the first to beat [[130edo|130]] and is superseded by [[224edo|224]]. In the 19- and 23-limit it is the first to beat [[140edo|140]] and is superseded by [[159edo|159]].  
* It is best at the no-17 19- and 23-limit, in which it has lower relative errors than any previous equal temperaments. Not until [[270edo|270]] do we find a better equal temperament that does better in either of those subgroups.  
* It is best at the no-17 19- and 23-limit, in which it has lower relative errors than any previous equal temperaments. Not until [[270edo|270]] do we find a better equal temperament that does better in either of those subgroups.  


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 128: Line 114:
|-
|-
| 2
| 2
| 43\152<br>(33\152)
| 43\152<br />(33\152)
| 339.47<br>(260.53)
| 339.47<br />(260.53)
| 243/200<br>(64/55)
| 243/200<br />(64/55)
| [[Hemiamity]]
| [[Hemiamity]]
|-
|-
| 2
| 2
| 55\152<br>(21\152)
| 55\152<br />(21\152)
| 434.21<br>(165.79)
| 434.21<br />(165.79)
| 9/7<br>(11/10)
| 9/7<br />(11/10)
| [[Supers]]
| [[Supers]]
|-
|-
| 4
| 4
| 63\152<br>(13\152)
| 63\152<br />(13\152)
| 497.37<br>(102.63)
| 497.37<br />(102.63)
| 4/3<br>(35/33)
| 4/3<br />(35/33)
| [[Undim]] / [[unlit]]
| [[Undim]] / [[unlit]]
|-
|-
| 8
| 8
| 63\152<br>(6\152)
| 63\152<br />(6\152)
| 497.37<br>(47.37)
| 497.37<br />(47.37)
| 4/3<br>(36/35)
| 4/3<br />(36/35)
| [[Twilight]]
| [[Twilight]]
|-
|-
| 8
| 8
| 74\152<br>(2\152)
| 74\152<br />(2\152)
| 584.21<br>(15.79)
| 584.21<br />(15.79)
| 7/5<br>(126/125)
| 7/5<br />(126/125)
| [[Octoid]] (152f) / [[octopus]] (152)
| [[Octoid]] (152f) / [[octopus]] (152)
|-
|-
| 19
| 19
| 63\152<br>(1\152)
| 63\152<br />(1\152)
| 497.37<br>(7.89)
| 497.37<br />(7.89)
| 4/3<br>(225/224)
| 4/3<br />(225/224)
| [[Enneadecal]]
| [[Enneadecal]]
|-
|-
| 38
| 38
| 63\152<br>(1\152)
| 63\152<br />(1\152)
| 497.37<br>(7.89)
| 497.37<br />(7.89)
| 4/3<br>(225/224)
| 4/3<br />(225/224)
| [[Hemienneadecal]]
| [[Hemienneadecal]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}


== Music ==
== Music ==
; [[birdshite stalactite]]
; [[birdshite stalactite]]
* "athlete's feet" from ''razorblade tiddlywinks'' (2023) [https://open.spotify.com/track/32c34U3syZDMAJkBzgh2pd Spotify] | [https://birdshitestalactite.bandcamp.com/track/athletes-feet Bandcamp] | [https://www.youtube.com/watch?v=lXqVaVn3SrA YouTube]
* "athlete's feet" from ''razorblade tiddlywinks'' (2023) &ndash; [https://open.spotify.com/track/32c34U3syZDMAJkBzgh2pd Spotify] | [https://birdshitestalactite.bandcamp.com/track/athletes-feet Bandcamp] | [https://www.youtube.com/watch?v=lXqVaVn3SrA YouTube]


[[Category:Amity]]
[[Category:Amity]]

Revision as of 05:46, 16 November 2024

← 151edo 152edo 153edo →
Prime factorization 23 × 19
Step size 7.89474 ¢ 
Fifth 89\152 (702.632 ¢)
Semitones (A1:m2) 15:11 (118.4 ¢ : 86.84 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

152edo is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It tempers out 1600000/1594323 (amity comma) and [32 -7 -9 (escapade comma) in the 5-limit; 4375/4374, 5120/5103, 6144/6125 and 16875/16807 in the 7-limit; 540/539, 1375/1372, 3025/3024, 4000/3993, 5632/5625 and 9801/9800 in the 11-limit. It provides the optimal patent val for the 11-limit linear temperaments amity, grendel, and kwai, and the 11-limit planar temperament laka.

It has two reasonable mappings for 13, with the 152f val scoring much better. The 152f val tempers out 352/351, 625/624, 640/637, 729/728, 847/845, 1188/1183, 1575/1573, 1716/1715 and 2080/2079, supporting and giving an excellent tuning for amity, kwai, and laka. The optimal tuning of this temperament is consistent in the 15-integer-limit. The patent val tempers out 169/168, 325/324, 351/350, 364/363, 1001/1000, 1573/1568, and 4096/4095, providing the optimal patent val for the 13-limit rank-5 temperament tempering out 169/168, as well as some further temperaments thereof, such as octopus.

Paul Erlich has suggested that 152edo could be considered a sort of universal tuning.

Prime harmonics

Approximation of prime harmonics in 152edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.68 +0.53 +2.23 +1.31 -3.69 -2.32 +2.49 +3.30 -3.26 -0.30
Relative (%) +0.0 +8.6 +6.7 +28.2 +16.6 -46.7 -29.4 +31.5 +41.9 -41.3 -3.8
Steps
(reduced)
152
(0)
241
(89)
353
(49)
427
(123)
526
(70)
562
(106)
621
(13)
646
(38)
688
(80)
738
(130)
753
(145)

Subsets and supersets

Since 152 factors into 23 × 19, 152edo has subset edos 2, 4, 8, 19, 38, 76.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [241 -152 | [152 241]] | −0.213 | 0.213 | 2.70 |- | 2.3.5 | 1600000/1594323, [32 -7 -9 | [152 241 353]] | −0.218 | 0.174 | 2.21 |- | 2.3.5.7 | 4375/4374, 5120/5103, 16875/16807 | [152 241 353 427]] | −0.362 | 0.291 | 3.69 |- | 2.3.5.7.11 | 540/539, 1375/1372, 4000/3993, 5120/5103 | [152 241 353 427 526]] | −0.365 | 0.260 | 3.30 |- | 2.3.5.7.11.13 | 352/351, 540/539, 625/624, 729/728, 1575/1573 | [152 241 353 427 526 563]] (152f) | −0.494 | 0.373 | 4.73 Template:Comma basis end

  • 152et (152fg val) has lower absolute errors in the 11-, 19-, and 23-limit than any previous equal temperaments. In the 11-limit it is the first to beat 130 and is superseded by 224. In the 19- and 23-limit it is the first to beat 140 and is superseded by 159.
  • It is best at the no-17 19- and 23-limit, in which it has lower relative errors than any previous equal temperaments. Not until 270 do we find a better equal temperament that does better in either of those subgroups.

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 7\152 | 55.26 | 33/32 | Escapade / alphaquarter |- | 1 | 31\152 | 244.74 | 15/13 | Subsemifourth |- | 1 | 39\152 | 307.89 | 3200/2673 | Familia |- | 1 | 43\152 | 339.47 | 243/200 | Amity |- | 1 | 49\152 | 386.84 | 5/4 | Grendel |- | 1 | 63\152 | 497.37 | 4/3 | Kwai |- | 1 | 71\152 | 560.53 | 242/175 | Whoops |- | 2 | 7\152 | 55.26 | 33/32 | Septisuperfourth |- | 2 | 9\152 | 71.05 | 25/24 | Vishnu / acyuta (152f) / ananta (152) |- | 2 | 43\152
(33\152) | 339.47
(260.53) | 243/200
(64/55) | Hemiamity |- | 2 | 55\152
(21\152) | 434.21
(165.79) | 9/7
(11/10) | Supers |- | 4 | 63\152
(13\152) | 497.37
(102.63) | 4/3
(35/33) | Undim / unlit |- | 8 | 63\152
(6\152) | 497.37
(47.37) | 4/3
(36/35) | Twilight |- | 8 | 74\152
(2\152) | 584.21
(15.79) | 7/5
(126/125) | Octoid (152f) / octopus (152) |- | 19 | 63\152
(1\152) | 497.37
(7.89) | 4/3
(225/224) | Enneadecal |- | 38 | 63\152
(1\152) | 497.37
(7.89) | 4/3
(225/224) | Hemienneadecal Template:Rank-2 end Template:Orf

Music

birdshite stalactite