Didacus: Difference between revisions
m replace {{IoT}} by plain categorization |
Removed redirect to Hemimean clan#Didacus Tag: Removed redirect |
||
Line 1: | Line 1: | ||
{{Infobox Regtemp | |||
| Title = Didacus | |||
| Subgroups = 2.5.7, 2.5.7.11 | |||
| Comma basis = [[3136/3125]] (2.5.7); <br> [[176/175]], [[1375/1372]] (2.5.7.11) | |||
| Edo join 1 = 6 | Edo join 2 = 19 | |||
| Generator = 28/25 | Generator tuning = 193.772 | Optimization method = POTE | |||
| MOS scales = [[1L 5s]], [[6L 1s]], [[6L 7s]] | |||
| Mapping = 1; 2 5 9 | |||
| Odd limit 1 = 7 | Mistuning 1 = ??? | Complexity 1 = 13 | |||
| Odd limit 2 = 11 | Mistuning 2 = ??? | Complexity 2 = 19 | |||
}} | |||
'''Didacus''' is an temperament of the [[2.5.7 subgroup]], tempering out [[3136/3125]], the hemimean comma, such that two intervals of [[7/5]] reach three intervals of [[5/4]]; the generator is therefore (7/5)/(5/4) = [[28/25]], two of which stack to 5/4 and three of which stack to 7/5, notable for being one of the most efficient traversals of the no-threes subgroup. [[31edo]] is a very good tuning of didacus, with its generator 5\31 (which is the "mean tone" of 31edo); but [[25edo]], [[37edo]], and [[68edo]] among others are good tunings as well. As this generator tends to be slightly less than 1/6 of the octave, [[MOS scale]]s of didacus tend to consist of 6 long intervals interspersed by sequences of diesis-sized steps (representing [[50/49]]~[[128/125]]), therefore bearing similar properties to those of [[slendric]]. | |||
It also has a simple extension to prime 11 - undecimal didacus, by tempering out [[176/175]], the valinorsma, so that (5/4)<sup>2</sup> is equated to [[11/7]]. Further extensions to primes 13, 17, and 19, known as roulette and mediantone, are also possible. | |||
As for prime 3, while didacus has as a weak extension (among others) [[septimal meantone]], strong extensions that include 3 are rather complex. Hemithirds (25 & 31) tempers out [[1029/1024]] to find the fifth at [[3/2]] [[~]] ([[8/7]])<sup>3</sup>, and therefore the 3rd harmonic 15 generators down; and hemiwürschmidt (31 & 37) tempers out [[2401/2400]] so that [[5/4]]<sup>8</sup> is equated to [[6/1]], finding the 3rd harmonic 16 generators up (and as described for the page for 5-limit [[würschmidt]], there is also a free extension to find [[23/1]] at 28 generators). These two mappings intersect in 31edo, though the latter spans the optimal range for undecimal didacus specifically. | |||
For technical data, see [[Hemimean clan #Didacus]]. | |||
== Interval chain == | |||
In the following table, odd harmonics and subharmonics 1–35 are labeled in '''bold'''. | |||
{| class="wikitable sortable center-all right-2" | |||
|- | |||
! rowspan="3" | # !! rowspan="3" | Cents* !! colspan="3" | Approximate ratios | |||
|- | |||
! rowspan="2" | 2.5.7.11 intervals !! colspan="3" | Intervals of extensions | |||
|- | |||
! Hemithirds !! Hemiwürschmidt | |||
|- | |||
| 0 | |||
| 0.0 | |||
| '''1/1''' | |||
| | |||
| | |||
|- | |||
| 1 | |||
| 194.4 | |||
| 28/25, 49/44, 55/49 | |||
| | |||
| | |||
|- | |||
| 2 | |||
| 388.9 | |||
| '''5/4''', 44/35 | |||
| | |||
| 144/115 | |||
|- | |||
| 3 | |||
| 583.3 | |||
| 7/5 | |||
| | |||
| | |||
|- | |||
| 4 | |||
| 777.7 | |||
| 11/7, '''25/16''' | |||
| | |||
| 36/23 | |||
|- | |||
| 5 | |||
| 972.1 | |||
| '''7/4''', 44/25 | |||
| | |||
| 184/105 | |||
|- | |||
| 6 | |||
| 1166.6 | |||
| 49/25, 55/28 | |||
| | |||
| 96/49, 45/23 | |||
|- | |||
| 7 | |||
| 161.0 | |||
| 11/10, '''35/32''' | |||
| | |||
| 23/21, 126/115 | |||
|- | |||
| 8 | |||
| 355.4 | |||
| 49/40, 121/98 | |||
| 128/105 | |||
| 60/49, 92/75 | |||
|- | |||
| 9 | |||
| 549.9 | |||
| '''11/8''' | |||
| | |||
| 48/35, 63/46, 115/84 | |||
|- | |||
| 10 | |||
| 744.3 | |||
| 49/32, 77/50 | |||
| 32/21 | |||
| 75/49, 23/15 | |||
|- | |||
| 11 | |||
| 938.7 | |||
| 55/32, 121/70 | |||
| 128/75 | |||
| 12/7 | |||
|- | |||
| 12 | |||
| 1133.1 | |||
| 77/40 | |||
| 40/21 | |||
| 48/25, 23/12 | |||
|- | |||
| 13 | |||
| 127.6 | |||
| 121/112 | |||
| 16/15 | |||
| 15/14 | |||
|- | |||
| 14 | |||
| 322.0 | |||
| 77/64, 121/100 | |||
| 25/21 | |||
| 6/5, 115/96 | |||
|- | |||
| 15 | |||
| 516.4 | |||
| | |||
| '''4/3''' | |||
| 75/56 | |||
|- | |||
| 16 | |||
| 710.8 | |||
| 121/80 | |||
| 112/75 | |||
| '''3/2''' | |||
|- | |||
| 17 | |||
| 905.3 | |||
| | |||
| 5/3 | |||
| 42/25 | |||
|- | |||
| 18 | |||
| 1099.7 | |||
| 121/64 | |||
| 28/15 | |||
| '''15/8''' | |||
|- | |||
| 19 | |||
| 94.1 | |||
| | |||
| 25/24 | |||
| 21/20 | |||
|} | |||
<nowiki />* In [[CWE]] undecimal didacus | |||
== Tunings == | |||
=== Optimized tunings === | |||
{| class="wikitable mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%; white-space: nowrap;" | Prime-optimized tunings | |||
|- | |||
! rowspan="2" | Weight-skew\Order !! colspan="2" | Euclidean | |||
|- | |||
! Constrained !! Destretched | |||
|- | |||
! Tenney | |||
| (2.5.7) CTE: ~28/25 = 193.650¢ || (2.5.7) POTE: ~28/25 = 193.772¢ | |||
|- | |||
! Equilateral | |||
| (2.5.7) CEE: ~28/25 = 193.681¢ | |||
(12/29-comma) | |||
|- | |||
! Tenney | |||
| (2.5.7.11) CTE: ~28/25 = 194.246¢ || (2.5.7.11) POTE: ~28/25 = 194.556¢ | |||
|} | |||
{| class="wikitable mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%; white-space: nowrap;" | [[Delta-rational chord|DR]] and equal-beating tunings | |||
|- | |||
! Optimized chord !! Generator value !! Polynomial !! Further notes | |||
|- | |||
| 4:5:7 (+1 +2) || ~28/25 = 197.346 || ''g''<sup>5</sup> − 3''g''<sup>2</sup> + 2 = 0 || Close to -1/5-comma | |||
|- | |||
| 5:7:8 (+2 +1) || ~28/25 = 193.829 || ''g''<sup>5</sup> − ''g''<sup>2</sup> − 4 = 0 || Close to 37/95-comma | |||
|- | |||
| 7:8:10 (+1 +2) || ~28/25 = 193.630 || ''g''<sup>5</sup> + ''g''<sup>2</sup> − 3 = 0 || Close to 33/80-comma | |||
|- | |||
| 8:11:14 (+1 +1) || ~28/25 = 195.043 || ''g''<sup>9</sup> − ''g''<sup>5</sup> − 1 = 0 || | |||
|- | |||
| 11:14:16 (+3 +2) || ~28/25 = 192.698 || ''g''<sup>9</sup> − 5''g''<sup>5</sup> + 6 = 0 || | |||
|} | |||
=== Tuning spectrum === | |||
{| class="wikitable center-all left-4" | |||
! EDO<br />generator | |||
! [[Eigenmonzo|Eigenmonzo<br />(unchanged interval)]]* | |||
! Generator (¢) | |||
! Comments | |||
|- | |||
| '''[[7edo|1\7]]''' | |||
| | |||
| '''171.429''' | |||
| 7dee val, '''lower bound of (2.5.7) 7-odd-limit diamond monotone''' | |||
|- | |||
| '''[[13edo|2\13]]''' | |||
| | |||
| '''184.615''' | |||
| 13e val, '''lower bound of (2.5.7.11) 11-odd-limit diamond monotone''' | |||
|- | |||
| [[19edo|3\19]] | |||
| | |||
| 189.474 | |||
| 19e val | |||
|- | |||
| | |||
| [[125/112]] | |||
| 190.115 | |||
| Full-comma | |||
|- | |||
| [[44edo|7\44]] | |||
| | |||
| 190.909 | |||
| 44dee val | |||
|- | |||
| [[25edo|4\25]] | |||
| | |||
| 192.000 | |||
| | |||
|- | |||
| [[56edo|9\56]] | |||
| | |||
| 192.857 | |||
| 56e val | |||
|- | |||
| [[87edo|14\87]] | |||
| | |||
| 193.103 | |||
| 87e val | |||
|- | |||
| | |||
| [[5/4]] | |||
| 193.157 | |||
| 1/2-comma | |||
|- | |||
| [[118edo|19\118]] | |||
| | |||
| 193.220 | |||
| 118ee val | |||
|- | |||
| [[31edo|5\31]] | |||
| | |||
| 193.548 | |||
| | |||
|- | |||
| | |||
| [[7/4]] | |||
| 193.765 | |||
| 2/5-comma | |||
|- | |||
| [[130edo|21\130]] | |||
| | |||
| 193.846 | |||
| 130e val | |||
|- | |||
| [[99edo|16\99]] | |||
| | |||
| 193.939 | |||
| | |||
|- | |||
| [[167edo|27\167]] | |||
| | |||
| 194.012 | |||
| 167e val | |||
|- | |||
| [[68edo|11\68]] | |||
| | |||
| 194.118 | |||
| | |||
|- | |||
| | |||
| [[7/5]] | |||
| 194.171 | |||
| 1/3-comma | |||
|- | |||
| [[105edo|17\105]] | |||
| | |||
| 194.286 | |||
| | |||
|- | |||
| [[142edo|23\142]] | |||
| | |||
| 194.366 | |||
| | |||
|- | |||
| | |||
| [[11/8]] | |||
| 194.591 | |||
| | |||
|- | |||
| [[37edo|6\37]] | |||
| | |||
| 194.595 | |||
| | |||
|- | |||
| | |||
| [[196/125]] | |||
| 194.678 | |||
| 1/4-comma | |||
|- | |||
| [[117edo|19\117]] | |||
| | |||
| 194.872 | |||
| 117d val | |||
|- | |||
| [[80edo|13\80]] | |||
| | |||
| 195.000 | |||
| | |||
|- | |||
| | |||
| [[11/10]] | |||
| 195.001 | |||
| | |||
|- | |||
| [[43edo|7\43]] | |||
| | |||
| 195.349 | |||
| | |||
|- | |||
| | |||
| [[11/7]] | |||
| 195.623 | |||
| | |||
|- | |||
| [[49edo|8\49]] | |||
| | |||
| 195.918 | |||
| | |||
|- | |||
| | |||
| [[28/25]] | |||
| 196.198 | |||
| Untempered tuning | |||
|- | |||
| [[55edo|9\55]] | |||
| | |||
| 196.364 | |||
| 55de val | |||
|- | |||
| '''[[6edo|1\6]]''' | |||
| | |||
| '''200.000''' | |||
| '''Upper bound of (no-threes) 7- and 11-odd-limit diamond monotone''' | |||
|} | |||
<nowiki />* Besides the octave | |||
=== Other tunings === | |||
* [[DKW theory|DKW]] (2.5.7): ~2 = 1\1, ~~28/25 = 194.061 | |||
[[Category:Temperaments]] | [[Category:Temperaments]] | ||
[[Category:Hemimean clan]] | [[Category:Hemimean clan]] |
Revision as of 22:59, 31 October 2024
Didacus |
176/175, 1375/1372 (2.5.7.11)
(11-odd limit) ??? ¢
(11-odd limit) 19 notes
Didacus is an temperament of the 2.5.7 subgroup, tempering out 3136/3125, the hemimean comma, such that two intervals of 7/5 reach three intervals of 5/4; the generator is therefore (7/5)/(5/4) = 28/25, two of which stack to 5/4 and three of which stack to 7/5, notable for being one of the most efficient traversals of the no-threes subgroup. 31edo is a very good tuning of didacus, with its generator 5\31 (which is the "mean tone" of 31edo); but 25edo, 37edo, and 68edo among others are good tunings as well. As this generator tends to be slightly less than 1/6 of the octave, MOS scales of didacus tend to consist of 6 long intervals interspersed by sequences of diesis-sized steps (representing 50/49~128/125), therefore bearing similar properties to those of slendric.
It also has a simple extension to prime 11 - undecimal didacus, by tempering out 176/175, the valinorsma, so that (5/4)2 is equated to 11/7. Further extensions to primes 13, 17, and 19, known as roulette and mediantone, are also possible.
As for prime 3, while didacus has as a weak extension (among others) septimal meantone, strong extensions that include 3 are rather complex. Hemithirds (25 & 31) tempers out 1029/1024 to find the fifth at 3/2 ~ (8/7)3, and therefore the 3rd harmonic 15 generators down; and hemiwürschmidt (31 & 37) tempers out 2401/2400 so that 5/48 is equated to 6/1, finding the 3rd harmonic 16 generators up (and as described for the page for 5-limit würschmidt, there is also a free extension to find 23/1 at 28 generators). These two mappings intersect in 31edo, though the latter spans the optimal range for undecimal didacus specifically.
For technical data, see Hemimean clan #Didacus.
Interval chain
In the following table, odd harmonics and subharmonics 1–35 are labeled in bold.
# | Cents* | Approximate ratios | ||
---|---|---|---|---|
2.5.7.11 intervals | Intervals of extensions | |||
Hemithirds | Hemiwürschmidt | |||
0 | 0.0 | 1/1 | ||
1 | 194.4 | 28/25, 49/44, 55/49 | ||
2 | 388.9 | 5/4, 44/35 | 144/115 | |
3 | 583.3 | 7/5 | ||
4 | 777.7 | 11/7, 25/16 | 36/23 | |
5 | 972.1 | 7/4, 44/25 | 184/105 | |
6 | 1166.6 | 49/25, 55/28 | 96/49, 45/23 | |
7 | 161.0 | 11/10, 35/32 | 23/21, 126/115 | |
8 | 355.4 | 49/40, 121/98 | 128/105 | 60/49, 92/75 |
9 | 549.9 | 11/8 | 48/35, 63/46, 115/84 | |
10 | 744.3 | 49/32, 77/50 | 32/21 | 75/49, 23/15 |
11 | 938.7 | 55/32, 121/70 | 128/75 | 12/7 |
12 | 1133.1 | 77/40 | 40/21 | 48/25, 23/12 |
13 | 127.6 | 121/112 | 16/15 | 15/14 |
14 | 322.0 | 77/64, 121/100 | 25/21 | 6/5, 115/96 |
15 | 516.4 | 4/3 | 75/56 | |
16 | 710.8 | 121/80 | 112/75 | 3/2 |
17 | 905.3 | 5/3 | 42/25 | |
18 | 1099.7 | 121/64 | 28/15 | 15/8 |
19 | 94.1 | 25/24 | 21/20 |
* In CWE undecimal didacus
Tunings
Optimized tunings
Weight-skew\Order | Euclidean | |
---|---|---|
Constrained | Destretched | |
Tenney | (2.5.7) CTE: ~28/25 = 193.650¢ | (2.5.7) POTE: ~28/25 = 193.772¢ |
Equilateral | (2.5.7) CEE: ~28/25 = 193.681¢
(12/29-comma) | |
Tenney | (2.5.7.11) CTE: ~28/25 = 194.246¢ | (2.5.7.11) POTE: ~28/25 = 194.556¢ |
Optimized chord | Generator value | Polynomial | Further notes |
---|---|---|---|
4:5:7 (+1 +2) | ~28/25 = 197.346 | g5 − 3g2 + 2 = 0 | Close to -1/5-comma |
5:7:8 (+2 +1) | ~28/25 = 193.829 | g5 − g2 − 4 = 0 | Close to 37/95-comma |
7:8:10 (+1 +2) | ~28/25 = 193.630 | g5 + g2 − 3 = 0 | Close to 33/80-comma |
8:11:14 (+1 +1) | ~28/25 = 195.043 | g9 − g5 − 1 = 0 | |
11:14:16 (+3 +2) | ~28/25 = 192.698 | g9 − 5g5 + 6 = 0 |
Tuning spectrum
EDO generator |
Eigenmonzo (unchanged interval)* |
Generator (¢) | Comments |
---|---|---|---|
1\7 | 171.429 | 7dee val, lower bound of (2.5.7) 7-odd-limit diamond monotone | |
2\13 | 184.615 | 13e val, lower bound of (2.5.7.11) 11-odd-limit diamond monotone | |
3\19 | 189.474 | 19e val | |
125/112 | 190.115 | Full-comma | |
7\44 | 190.909 | 44dee val | |
4\25 | 192.000 | ||
9\56 | 192.857 | 56e val | |
14\87 | 193.103 | 87e val | |
5/4 | 193.157 | 1/2-comma | |
19\118 | 193.220 | 118ee val | |
5\31 | 193.548 | ||
7/4 | 193.765 | 2/5-comma | |
21\130 | 193.846 | 130e val | |
16\99 | 193.939 | ||
27\167 | 194.012 | 167e val | |
11\68 | 194.118 | ||
7/5 | 194.171 | 1/3-comma | |
17\105 | 194.286 | ||
23\142 | 194.366 | ||
11/8 | 194.591 | ||
6\37 | 194.595 | ||
196/125 | 194.678 | 1/4-comma | |
19\117 | 194.872 | 117d val | |
13\80 | 195.000 | ||
11/10 | 195.001 | ||
7\43 | 195.349 | ||
11/7 | 195.623 | ||
8\49 | 195.918 | ||
28/25 | 196.198 | Untempered tuning | |
9\55 | 196.364 | 55de val | |
1\6 | 200.000 | Upper bound of (no-threes) 7- and 11-odd-limit diamond monotone |
* Besides the octave
Other tunings
- DKW (2.5.7): ~2 = 1\1, ~~28/25 = 194.061