Mos mode degrees with rotations of multiple modmosses
UDP
Step pattern
Mode names
Scale degree (diadegree)
0
1
2
3
4
5
6
7
6|0
LLLsLLs
Lydian
Perf.
Maj.
Maj.
Aug.
Perf.
Maj.
Maj.
Perf.
5|1
LLsLLLs
Ionian (major)
Perf.
Maj.
Maj.
Perf.
Perf.
Maj.
Maj.
Perf.
4|2
LLsLLsL
Mixolydian
Perf.
Maj.
Maj.
Perf.
Perf.
Maj.
Min.
Perf.
3|3
LsLLLsL
Dorian
Perf.
Maj.
Min.
Perf.
Perf.
Maj.
Min.
Perf.
2|4
LsLLsLL
Aeolian (minor)
Perf.
Maj.
Min.
Perf.
Perf.
Min.
Min.
Perf.
1|5
sLLLsLL
Phrygian
Perf.
Min.
Min.
Perf.
Perf.
Min.
Min.
Perf.
0|6
sLLsLLL
Locrian
Perf.
Min.
Min.
Perf.
Dim.
Min.
Min.
Perf
2|4 M6md
LsLLsAs
Harmonic minor
Perf.
Maj.
Min.
Perf.
Perf.
Min.
Maj.
Perf.
0|6 M5md
sLLsAsL
Locrian #6
Perf.
Min.
Min.
Perf.
Dim.
Maj.
Min.
Perf.
5|1 A4md
LLsAsLs
Ionian augmented
Perf.
Maj.
Maj.
Perf.
Aug.
Maj.
Maj.
Perf.
3|3 A3md
LsAsLsL
Dorian #4
Perf.
Maj.
Min.
Aug.
Perf.
Maj.
Min.
Perf.
1|5 M2md
sAsLsLL
Phrygian dominant
Perf.
Min.
Maj.
Perf.
Perf.
Min.
Min.
Perf.
6|0 A1md
AsLsLLs
Lydian #2
Perf.
Aug.
Maj.
Aug.
Perf.
Maj.
Maj.
Perf.
0|6 d3md d6md
sLsLLsA
Locrian b4 bb7
Perf.
Min.
Min.
Dim.
Dim.
Min.
Dim.
Perf.
5|1 m5md
LLsLsAs
Ionian b6 (Harmonic major)
Perf.
Maj.
Maj.
Perf.
Perf.
Min.
Maj.
Perf.
3|3 d4md
LsLsAsL
Dorian b5 (Dorian diminished)
Perf.
Maj.
Min.
Perf.
Dim.
Maj.
Min.
Perf.
1|5 d3md
sLsAsLL
Phrygian b4
Perf.
Min.
Min.
Dim.
Perf.
Min.
Min.
Perf.
6|0 m2md
LsAsLLs
Lydian b3 (Lydian minor)
Perf.
Maj.
Min.
Aug.
Perf.
Maj.
Maj.
Perf.
4|2 m1md
sAsLLsL
Mixolydian b2
Perf.
Min.
Maj.
Perf.
Perf.
Maj.
Min.
Perf.
6|0 A1md A4md
AsLLsLs
Lydian #2 #5
Perf.
Aug.
Maj.
Aug.
Aug.
Maj.
Maj.
Perf.
0|6 d6md
sLLsLsA
Locrian bb7
Perf.
Min.
Min.
Perf.
Dim.
Min.
Dim.
Perf.
5|1 m2md
LsLLLLs
Aeolian ♮6 ♮7 (Melodic minor)
Perf.
Maj.
Min.
Perf.
Perf.
Maj.
Maj.
Perf.
3|3 m1md
sLLLLsL
Dorian b2
Perf.
Min.
Min.
Perf.
Perf.
Maj.
Min.
Perf.
6|0 A4md
LLLLsLs
Lydian #5 (Lydian augmented)
Perf.
Maj.
Maj.
Aug.
Aug.
Maj.
Maj.
Perf.
6|0 m6md
LLLsLsL
Lydian b7 (Lydian dominant)
Perf.
Maj.
Maj.
Aug.
Perf.
Maj.
Min.
Perf.
4|2 m5md
LLsLsLL
Mixolydian b6
Perf.
Maj.
Maj.
Perf.
Perf.
Min.
Min.
Perf.
2|4 d4md
LsLsLLL
Locrian ♮2 (Half-diminished)
Perf.
Maj.
Min.
Perf.
Dim.
Min.
Min.
Perf.
0|6 d3md
sLsLLLL
Locrian bb4 (Altered dominant, super-locrian)
Perf.
Min.
Min.
Dim.
Dim.
Min.
Min.
Perf.
5|1 m1md m2md
sLLLLLs
Ionian b2 b3 (Neapolitan major)
Perf.
Min.
Min.
Perf.
Perf.
Maj.
Maj.
Perf.
6|0 A4md A5md
LLLLLss
Lydian #5 #6
Perf.
Maj.
Maj.
Aug.
Aug.
Aug.
Maj.
Perf.
6|0 A4md m6md
LLLLssL
Lydian #5 b7
Perf.
Maj.
Maj.
Aug.
Aug.
Maj.
Min.
Perf.
6|0 m5md m6md
LLLssLL
Lydian b6 b7
Perf.
Maj.
Maj.
Aug.
Perf.
Min.
Min.
Perf.
4|2 d4md m5md
LLssLLL
Locrian ♮2 ♮3 (Major locrian)
Perf.
Maj.
Maj.
Perf.
Dim.
Min.
Min.
Perf.
2|4 d3md d4md
LssLLLL
Locrian ♮2 b4
Perf.
Maj.
Min.
Dim.
Dim.
Min.
Min.
Perf.
0|6 d2md d3md
ssLLLLL
Locrian bb3 b4
Perf.
Min.
Dim.
Dim.
Dim.
Min.
Min.
Perf.
MOS step sizes
3L 4s step sizes
Interval
Basic 3L 4s
(10edo, L:s = 2:1)
Hard 3L 4s
(13edo, L:s = 3:1)
Soft 3L 4s
(17edo, L:s = 3:2)
Approx. JI ratios
Steps
Cents
Steps
Cents
Steps
Cents
Large step
2
240¢
3
276.9¢
3
211.8¢
Hide column if no ratios given
Small step
1
120¢
1
92.3¢
2
141.2¢
Bright generator
3
360¢
4
369.2¢
5
355.6¢
Notes:
Allow option to show the bright generator, dark generator, or no generator.
JI ratios column only shows if there are any ratios to show
Expanded MOS intro
The following pieces of information may be worth adding:
Distinguishing between TAMNAMS names from other, noteworthy non-TAMNAMS names. Equave-agnostic names can be treated as TAMNAMS name for appropriate mosses (EG, 4L 1s).
The specific step pattern for the true mos. (The template will have a link to the page for rotations.)
Simple edos (or ed<p/q>) that support the mos.
Support for TAMEX names, or how the mos relates to another, ancestral TAMNAMS-named mos. Extensions include chromatic, enharmonic, subchromatic, and descendant. This requires standardizing the naming scheme for descendant mosses before it can be added.
TAMEX is short for temperament-agnostic moment-of-symmetry scale extension naming system.
Whether the mos exhibits Rothenberg propriety.
Base wording
xL ys<p/q>, named mosname (also called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), repeating every equave. Modes of this scale are based on the step pattern of step-pattern. Equal divisions of the equave that support this scale include basic-ed, hard-ed, and soft-ed. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
nxL nys<p/q>, named mosname (also called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale, containing nx large steps(s) and ny small step(s), with a period of x large step(s) and y small steps(s) that repeats every equave-fraction, or n times every equave. Modes of this scale are based on the step pattern of step-pattern. Equal divisions of the equave that support this scale include basic-ed, hard-ed, and soft-ed. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
Supplemental info
For monosmall and monosmall-per-period mosses: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.
For mosses that descend from a TAMNAMS-named mos: xL ys<p/q> is a kth-orderdescendant scale of zL ws<p/q>, an extension of zL ws<p/q> scales with a step-ratio-range step ratio.
Examples
5L 7s, also called p-chromatic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a child scale of 5L 2s, expanding it by 5 tones. Generators that produce this scale range from 700 ¢ to 720 ¢, or from 480 ¢ to 500 ¢.
5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Equal divisions of the octave that support this scale's step pattern include 17edo, 22edo, and 29edo. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.
Mbox template test
These would be their own templates.
Stub page:
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
Page needs cleanup (with example reason):
This article may require cleanup.
Reason: page contains advanced concepts.
You can edit this page to improve it.
Page under construction:
This article is being created or in the process of being rewritten, and is not yet ready for use. You are welcome to help with editing this page.
Math symbols test
Isolated symbols
[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math][math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math][math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]
Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.
The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.
Interval and degree tables
The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.
Intervals of 2L 5s for each mode
Mode
UDP
Rotational order
mosunison
1-mosstep
2-mosstep
3-mosstep
4-mosstep
5-mosstep
6-mosstep
mosoctave
LssLsss
6|0
0
0
L
L+s
L+2s
2L+2s
2L+3s
2L+4s
2L+5s
LsssLss
5|1
3
0
L
L+s
L+2s
L+3s
2L+3s
2L+4s
2L+5s
sLssLss
4|2
6
0
s
L+s
L+2s
L+3s
2L+3s
2L+4s
2L+5s
sLsssLs
3|3
2
0
s
L+s
L+2s
L+3s
L+4s
2L+4s
2L+5s
ssLssLs
2|4
5
0
s
2s
L+2s
L+3s
L+4s
2L+4s
2L+5s
ssLsssL
1|5
1
0
s
2s
L+2s
L+3s
L+4s
L+5s
2L+5s
sssLssL
0|6
4
0
s
2s
3s
L+3s
L+4s
L+5s
2L+5s
Degrees of 2L 5s for each mode
Mode
UDP
Rotational order
0-mosdegree
1-mosdegree
2-mosdegree
3-mosdegree
4-mosdegree
5-mosdegree
6-mosdegree
7-mosdegree
LssLsss
6|0
0
perfect
major
major
perfect
augmented
major
major
perfect
LsssLss
5|1
3
perfect
major
major
perfect
perfect
major
major
perfect
sLssLss
4|2
6
perfect
minor
major
perfect
perfect
major
major
perfect
sLsssLs
3|3
2
perfect
minor
major
perfect
perfect
minor
major
perfect
ssLssLs
2|4
5
perfect
minor
minor
perfect
perfect
minor
major
perfect
ssLsssL
1|5
1
perfect
minor
minor
perfect
perfect
minor
minor
perfect
sssLssL
0|6
4
perfect
minor
minor
diminished
perfect
minor
minor
perfect
Note: don't merge cells on a table with sorting.
Intervals of 2L 5s for each mode (with mode names)