Amity family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Aura (talk | contribs)
No edit summary
Update keys and normalize mappings
Line 10: Line 10:
[[Comma list]]: 1600000/1594323
[[Comma list]]: 1600000/1594323


[[Mapping]]: [{{val| 1 3 6 }}, {{val| 0 -5 -13 }}]
{{Mapping|legend=1| 1 3 6 | 0 -5 -13 }}


Mapping generators: ~2, ~243/200
: mapping generators: ~2, ~243/200


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.519
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.519
Line 24: Line 24:


Temperaments discussed elsewhere include:  
Temperaments discussed elsewhere include:  
* ''[[Chromat]]'', {10976/10935, 235298/234375} → [[Hemimage temperaments #Chromat]]
* ''[[Chromat]]'' → [[Hemimage temperaments #Chromat]] (+10976/10935)
* ''[[Witch]]'', {420175/419904, 1600000/1594323} → [[Wizmic microtemperaments #Witch]]
* ''[[Witch]]'' → [[Wizmic microtemperaments #Witch]] (+420175/419904)


== Septimal amity ==
== Septimal amity ==
Line 36: Line 36:
[[Comma list]]: 4375/4374, 5120/5103
[[Comma list]]: 4375/4374, 5120/5103


[[Mapping]]: [{{val| 1 3 6 -2 }}, {{val| 0 -5 -13 17 }}]
{{Mapping|legend=1| 1 3 6 -2 | 0 -5 -13 17 }}


{{Multival|legend=1| 5 13 -17 9 -41 -76 }}
{{Multival|legend=1| 5 13 -17 9 -41 -76 }}
Line 51: Line 51:
Comma list: 540/539, 4375/4374, 5120/5103
Comma list: 540/539, 4375/4374, 5120/5103


Mapping: [{{val| 1 3 6 -2 21 }}, {{val| 0 -5 -13 17 -62 }}]
Mapping: {{mapping| 1 3 6 -2 21 | 0 -5 -13 17 -62 }}


Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464
Line 64: Line 64:
Comma list: 352/351, 540/539, 625/624, 847/845
Comma list: 352/351, 540/539, 625/624, 847/845


Mapping: [{{val| 1 3 6 -2 21 17 }}, {{val| 0 -5 -13 17 -62 -47 }}]
Mapping: {{mapping| 1 3 6 -2 21 17 | 0 -5 -13 17 -62 -47 }}


Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481
Line 79: Line 79:
Comma list: 121/120, 176/175, 2200/2187
Comma list: 121/120, 176/175, 2200/2187


Mapping: [{{val| 1 3 6 -2 6 }}, {{val| 0 -5 -13 17 -9 }}]
Mapping: {{mapping| 1 3 6 -2 6 | 0 -5 -13 17 -9 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390
Line 92: Line 92:
Comma list: 121/120, 169/168, 176/175, 325/324
Comma list: 121/120, 169/168, 176/175, 325/324


Mapping: [{{val| 1 3 6 -2 6 2 }}, {{val| 0 -5 -13 17 -9 6 }}]
Mapping: {{mapping| 1 3 6 -2 6 2 | 0 -5 -13 17 -9 6 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419
Line 105: Line 105:
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272


Mapping: [{{val| 1 3 6 -2 6 2 -1 }}, {{val| 0 -5 -13 17 -9 6 18 }}]
Mapping: {{mapping| 1 3 6 -2 6 2 -1 | 0 -5 -13 17 -9 6 18 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366
Line 118: Line 118:
Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189
Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189


Mapping: [{{val| 1 3 6 -2 6 2 -1 0 }}, {{val| 0 -5 -13 17 -9 6 18 15 }}]
Mapping: {{mapping| 1 3 6 -2 6 2 -1 0 | 0 -5 -13 17 -9 6 18 15 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407
Line 133: Line 133:
Comma list: 441/440, 896/891, 4375/4374
Comma list: 441/440, 896/891, 4375/4374


Mapping: [{{val| 1 3 6 -2 -7 }}, {{val| 0 -5 -13 17 37 }}]
Mapping: {{mapping| 1 3 6 -2 -7 | 0 -5 -13 17 37 }}


Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340
Line 146: Line 146:
Comma list: 196/195, 352/351, 364/363, 4375/4374
Comma list: 196/195, 352/351, 364/363, 4375/4374


Mapping: [{{val| 1 3 6 -2 -7 -11 }}, {{val| 0 -5 -13 17 37 52 }}]
Mapping: {{mapping| 1 3 6 -2 -7 -11 | 0 -5 -13 17 37 52 }}


Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313
Line 159: Line 159:
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155


Mapping: [{{val| 1 3 6 -2 -7 -11 -1 }}, {{val| 0 -5 -13 17 37 52 18 }}]
Mapping: {{mapping| 1 3 6 -2 -7 -11 -1 | 0 -5 -13 17 37 52 18 }}


Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313
Line 172: Line 172:
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475


Mapping: [{{val| 1 3 6 -2 -7 -11 -1 -13 }}, {{val| 0 -5 -13 17 37 52 18 61 }}]
Mapping: {{mapping| 1 3 6 -2 -7 -11 -1 -13 | 0 -5 -13 17 37 52 18 61 }}


Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325
Line 185: Line 185:
Comma list: 3025/3024, 4375/4374, 5120/5103
Comma list: 3025/3024, 4375/4374, 5120/5103


Mapping: [{{val| 2 1 -1 13 13 }}, {{val| 0 5 13 -17 -14 }}]
Mapping: {{mapping| 2 1 -1 13 13 | 0 5 13 -17 -14 }}


Mapping generators: ~99/70, ~64/55
: mapping generators: ~99/70, ~64/55


Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561
Line 200: Line 200:
Comma list: 352/351, 847/845, 1716/1715, 3025/3024
Comma list: 352/351, 847/845, 1716/1715, 3025/3024


Mapping: [{{val| 2 1 -1 13 13 20 }}, {{val| 0 5 13 -17 -14 -29 }}]
Mapping: {{mapping| 2 1 -1 13 13 20 | 0 5 13 -17 -14 -29 }}


Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583
Line 213: Line 213:
[[Comma list]]: 126/125, 100352/98415
[[Comma list]]: 126/125, 100352/98415


[[Mapping]]: [{{val| 1 3 6 11 }}, {{val| 0 -5 -13 -29 }}]
{{Mapping|legend=1| 1 3 6 11 | 0 -5 -13 -29 }}


{{Multival|legend=1| 5 13 29 9 32 31 }}
{{Multival|legend=1| 5 13 29 9 32 31 }}
Line 228: Line 228:
Comma list: 121/120, 126/125, 896/891
Comma list: 121/120, 126/125, 896/891


Mapping: [{{val| 1 3 6 11 6 }}, {{val| 0 -5 -13 -29 -9 }}]
Mapping: {{mapping| 1 3 6 11 6 | 0 -5 -13 -29 -9 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047
Line 237: Line 237:


== Houborizic ==
== Houborizic ==
The ''houborizic'' temperament (53&113) tempers out the [[marvel comma]], 225/224. It is so named because it is closely related to the '''houboriz tuning''' (generator: 339.774971 cents).
The ''houborizic'' temperament (53 & 60) tempers out the [[marvel comma]], 225/224. It is so named because it is closely related to the '''houboriz tuning''' (generator: 339.774971 cents).


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 243: Line 243:
[[Comma list]]: 225/224, 1250000/1240029
[[Comma list]]: 225/224, 1250000/1240029


[[Mapping]]: [{{val| 1 3 6 13 }}, {{val| 0 -5 -13 -36 }}]
{{Mapping|legend=1| 1 3 6 13 | 0 -5 -13 -36 }}


{{Multival|legend=1| 5 13 36 9 43 47 }}
{{Multival|legend=1| 5 13 36 9 43 47 }}
Line 258: Line 258:
Comma list: 225/224, 385/384, 1250000/1240029
Comma list: 225/224, 385/384, 1250000/1240029


Mapping: [{{val| 1 3 6 13 -9 }}, {{val| 0 -5 -13 -36 44 }}]
Mapping: {{mapping| 1 3 6 13 -9 | 0 -5 -13 -36 44 }}


Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763
Line 271: Line 271:
Comma list: 225/224, 325/324, 385/384, 2200/2197
Comma list: 225/224, 325/324, 385/384, 2200/2197


Mapping: [{{val| 1 3 6 13 -9 2 }}, {{val| 0 -5 -13 -36 44 6 }}]
Mapping: {{mapping| 1 3 6 13 -9 2 | 0 -5 -13 -36 44 6 }}


Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764
Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764
Line 312: Line 312:
[[Comma list]]: 65625/65536, 1600000/1594323
[[Comma list]]: 65625/65536, 1600000/1594323


[[Mapping]]: [{{val|1 3 6 -17}}, {{val|0 -5 -13 70}}]
{{Mapping|legend=1|1 3 6 -17 | 0 -5 -13 70 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.553
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.553
Line 325: Line 325:
Comma list: 6250/6237, 19712/19683, 41503/41472
Comma list: 6250/6237, 19712/19683, 41503/41472


Mapping: [{{val| 1 3 6 -17 36 }}, {{val| 0 -5 -13 70 -115 }}]
Mapping: {{mapping| 1 3 6 -17 36 | 0 -5 -13 70 -115 }}


Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Line 338: Line 338:
Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683
Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683


Mapping: [{{val| 1 3 6 -17 36 17 }}, {{val| 0 -5 -13 70 -115 -47 }}]
Mapping: {{mapping| 1 3 6 -17 36 17 | 0 -5 -13 70 -115 -47 }}


Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Line 351: Line 351:
Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430
Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430


Mapping: [{{val| 1 3 6 -17 36 17 -31 }}, {{val| 0 -5 -13 70 -115 -47 124 }}]
Mapping: {{mapping| 1 3 6 -17 36 17 -31 | 0 -5 -13 70 -115 -47 124 }}


Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555
Line 364: Line 364:
Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197
Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197


Mapping: [{{val| 1 3 6 -17 36 17 -31 15 }}, {{val| 0 -5 -13 70 -115 -47 124 -38 }}]
Mapping: {{mapping| 1 3 6 -17 36 17 -31 15 | 0 -5 -13 70 -115 -47 124 -38 }}


Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555
Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555
Line 373: Line 373:


== Bamity ==
== Bamity ==
Bamity has a period of half octave and tempers out the sensamagic comma, [[245/243]]. The name ''bamity'' is a play on the words ''bi-'' and ''amity''.
Bamity has a period of half octave and tempers out the sensamagic comma, [[245/243]]. The name ''bamity'' is a contraction of ''bi-'' and ''amity''.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 379: Line 379:
[[Comma list]]: 245/243, 64827/64000
[[Comma list]]: 245/243, 64827/64000


[[Mapping]]: [{{val| 2 1 -1 3 }}, {{val| 0 5 13 6 }}]
{{Mapping|legend=1| 2 1 -1 3 | 0 5 13 6 }}


Mapping generators: ~343/240, ~7/6
: mapping generators: ~343/240, ~7/6


{{Multival|legend=1| 10 26 12 18 -9 -45 }}
{{Multival|legend=1| 10 26 12 18 -9 -45 }}
Line 396: Line 396:
Comma list: 121/120, 245/243, 441/440
Comma list: 121/120, 245/243, 441/440


Mapping: [{{val| 2 1 -1 3 3 }}, {{val| 0 5 13 6 9 }}]
Mapping: {{mapping| 2 1 -1 3 3 | 0 5 13 6 9 }}


Optimal tuning (POTE): ~99/70 = 1\2, ~7/6 = 260.393
Optimal tuning (POTE): ~99/70 = 1\2, ~7/6 = 260.393
Line 409: Line 409:
Comma list: 91/90, 121/120, 245/243, 441/440
Comma list: 91/90, 121/120, 245/243, 441/440


Mapping: [{{val| 2 1 -1 3 3 0 }}, {{val| 0 5 13 6 9 17 }}]
Mapping: {{mapping| 2 1 -1 3 3 0 | 0 5 13 6 9 17 }}


Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 260.618
Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 260.618
Line 418: Line 418:


== Hamity ==
== Hamity ==
Hamity has a generator of about 430 cents which represents [[9/7]]. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a play on the words ''half'' and ''amity''.
Hamity has a generator of about 430 cents which represents [[9/7]]. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a contraction of ''half'' and ''amity''.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 424: Line 424:
[[Comma list]]: 2430/2401, 4000/3969  
[[Comma list]]: 2430/2401, 4000/3969  


[[Mapping]]: [{{val| 1 -2 -7 -4 }}, {{val| 0 10 26 19 }}]
{{Mapping|legend=1| 1 8 19 15 | 0 -10 -26 -19 }}
 
: mapping generators: ~2, ~14/9


{{Multival|legend=1| 10 26 19 18 2 -29 }}
{{Multival|legend=1| 10 26 19 18 2 -29 }}
Line 439: Line 441:
Comma list: 99/98, 121/120, 2200/2187
Comma list: 99/98, 121/120, 2200/2187


Mapping: [{{val| 1 -2 -7 -4 -3 }}, {{val| 0 10 26 19 18 }}]
Mapping: {{mapping| 1 8 19 15 15 | 0 -10 -26 -19 -18 }}


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192
Line 452: Line 454:
Comma list: 99/98, 121/120, 275/273, 572/567
Comma list: 99/98, 121/120, 275/273, 572/567


Mapping: [{{val| 1 -2 -7 -4 -3 -11 }}, {{val| 0 10 26 19 18 41 }}]
Mapping: {{mapping| 1 8 19 15 15 30 | 0 -10 -26 -19 -18 -41 }}


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216
Line 467: Line 469:
[[Comma list]]: 1029/1024, 1071875/1062882
[[Comma list]]: 1029/1024, 1071875/1062882


[[Mapping]]: [{{val| 1 -2 -7 4 }}, {{val| 0 15 39 -5 }}]
{{Mapping|legend=1| 1 13 32 -1 | 0 -15 -39 5 }}
 
: mapping generators: ~2, ~320/189


{{Multival|legend=1| 15 39 -5 27 -50 -121 }}
{{Multival|legend=1| 15 39 -5 27 -50 -121 }}
Line 482: Line 486:
Comma list: 385/384, 441/440, 1071875/1062882
Comma list: 385/384, 441/440, 1071875/1062882


Mapping: [{{val| 1 -2 -7 4 8 }}, {{val| 0 15 39 -5 -19 }}]
Mapping: {{mapping| 1 13 32 -1 -11 | 0 -15 -39 5 19 }}


Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797
Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797
Line 495: Line 499:
Comma list: 325/324, 364/363, 385/384, 10985/10976
Comma list: 325/324, 364/363, 385/384, 10985/10976


Mapping: [{{val| 1 -2 -7 4 8 8 }}, {{val| 0 15 39 -5 -19 -18 }}]
Mapping: {{mapping| 1 13 32 -1 -11 -10 | 0 -15 -39 5 19 18 }}


Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789
Line 508: Line 512:
Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757
Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757


Mapping: [{{val| 1 -2 -7 4 8 8 6 }}, {{val| 0 15 39 -5 -19 -18 -8 }}]
Mapping: {{mapping| 1 13 32 -1 -11 -10 -2 | 0 -15 -39 5 19 18 8 }}


Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795
Line 517: Line 521:


== Trinity ==
== Trinity ==
The ''trinity'' temperament (152 & 159) tempers out the [[meter]], 703125/702464. It splits the acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction.
The trinity temperament (152 & 159) tempers out the [[meter]], 703125/702464. It splits the acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 523: Line 527:
[[Comma list]]: 703125/702464, 1600000/1594323
[[Comma list]]: 703125/702464, 1600000/1594323


[[Mapping]]: [{{val| 1 8 19 46 }}, {{val| 0 -15 -39 -101 }}]
{{Mapping|legend=1| 1 8 19 46 | 0 -15 -39 -101 }}


{{Multival|legend=1| 15 39 101 27 118 125 }}
{{Multival|legend=1| 15 39 101 27 118 125 }}
Line 538: Line 542:
Comma list: 3025/3024, 4000/3993, 19712/19683
Comma list: 3025/3024, 4000/3993, 19712/19683


Mapping: [{{val| 1 8 19 46 18 }}, {{val| 0 -15 -39 -101 -34 }}]
Mapping: {{mapping| 1 8 19 46 18 | 0 -15 -39 -101 -34 }}


POTE generator: ~121/90 = 513.177
Optimal tuning (POTE): ~2 = 1\1, ~121/90 = 513.177


{{Optimal ET sequence|legend=1| 152, 311, 463, 774, 1237e }}
{{Optimal ET sequence|legend=1| 152, 311, 463, 774, 1237e }}
Line 551: Line 555:
Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689
Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689


Mapping: [{{val| 1 8 19 46 18 64 }}, {{val| 0 -15 -39 -101 -34 -141 }}]
Mapping: {{mapping| 1 8 19 46 18 64 | 0 -15 -39 -101 -34 -141 }}


Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182
Line 564: Line 568:
Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619
Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619


Mapping: [{{val| 1 8 19 46 18 64 -22 }}, {{val| 0 -15 -39 -101 -34 -141 61 }}]
Mapping: {{mapping| 1 8 19 46 18 64 -22 | 0 -15 -39 -101 -34 -141 61 }}


Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Line 577: Line 581:
Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573
Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573


Mapping: [{{val| 1 8 19 46 18 64 -22 53 }}, {{val| 0 -15 -39 -101 -34 -141 61 -114 }}]
Mapping: {{mapping| 1 8 19 46 18 64 -22 53 | 0 -15 -39 -101 -34 -141 61 -114 }}


Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Line 590: Line 594:
Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104
Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104


Mapping: [{{val| 1 8 19 46 18 64 -22 53 49 }}, {{val| 0 -15 -39 -101 -34 -141 61 -114 -104 }}]
Mapping: {{mapping| 1 8 19 46 18 64 -22 53 49 | 0 -15 -39 -101 -34 -141 61 -114 -104 }}


Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Line 603: Line 607:
Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044
Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044


Mapping: [{{val| 1 8 19 46 18 64 -22 53 49 72 }}, {{val| 0 -15 -39 -101 -34 -141 61 -114 -104 -157 }}]
Mapping: {{mapping| 1 8 19 46 18 64 -22 53 49 72 | 0 -15 -39 -101 -34 -141 61 -114 -104 -157 }}


Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Line 616: Line 620:
While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.  
While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.  


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 1600000/1594323
[[Comma list]]: 2401/2400, 1600000/1594323


[[Mapping]]: [{{val| 1 3 6 5 }}, {{val| 0 -20 -52 -31 }}]
{{Mapping|legend=1| 1 3 6 5 | 0 -20 -52 -31 }}


{{Multival|legend=1| 20 52 31 36 -7 -74 }}
{{Multival|legend=1| 20 52 31 36 -7 -74 }}
Line 635: Line 639:
Comma list: 2401/2400, 131072/130977, 1600000/1594323
Comma list: 2401/2400, 131072/130977, 1600000/1594323


Mapping: [{{val| 1 3 6 5 -8 }}, {{val| 0 -20 -52 -31 162 }}]
Mapping: {{mapping| 1 3 6 5 -8 | 0 -20 -52 -31 162 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8843
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8843
Line 648: Line 652:
Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206
Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206


Mapping: [{{val| 1 3 6 5 -8 -5 }}, {{val| 0 -20 -52 -31 162 123 }}]
Mapping: {{mapping| 1 3 6 5 -8 -5 | 0 -20 -52 -31 162 123 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8838
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8838
Line 661: Line 665:
Comma list: 2401/2400, 6250/6237, 19712/19683
Comma list: 2401/2400, 6250/6237, 19712/19683


Mapping: [{{val| 1 3 6 5 14 }}, {{val| 0 -20 -52 -31 -149 }}]
Mapping: {{mapping| 1 3 6 5 14 | 0 -20 -52 -31 -149 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8896
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8896
Line 674: Line 678:
Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647
Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647


Mapping: [{{val| 1 3 6 5 14 17 }}, {{val| 0 -20 -52 -31 -149 -188 }}]
Mapping: {{mapping| 1 3 6 5 14 17 | 0 -20 -52 -31 -149 -188 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8910
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8910
Line 687: Line 691:
Comma list: 385/384, 1375/1372, 1600000/1594323
Comma list: 385/384, 1375/1372, 1600000/1594323


Mapping: [{{val| 1 3 6 5 -1 }}, {{val| 0 -20 -52 -31 63 }}]
Mapping: {{mapping| 1 3 6 5 -1 | 0 -20 -52 -31 63 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9091
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9091
Line 700: Line 704:
Comma list: 325/324, 385/384, 1375/1372, 19773/19712
Comma list: 325/324, 385/384, 1375/1372, 19773/19712


Mapping: [{{val| 1 3 6 5 -1 2 }}, {{val| 0 -20 -52 -31 63 24 }}]
Mapping: {{mapping| 1 3 6 5 -1 2 | 0 -20 -52 -31 63 24 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9127
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9127
Line 713: Line 717:
Comma list: 243/242, 441/440, 980000/970299
Comma list: 243/242, 441/440, 980000/970299


Mapping: [{{val| 1 3 6 5 7 }}, {{val| 0 -20 -52 -31 -50 }}]
Mapping: {{mapping| 1 3 6 5 7 | 0 -20 -52 -31 -50 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8917
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8917
Line 726: Line 730:
Comma list: 243/242, 364/363, 441/440, 1875/1859
Comma list: 243/242, 364/363, 441/440, 1875/1859


Mapping: [{{val| 1 3 6 5 7 10 }}, {{val| 0 -20 -52 -31 -50 -89 }}]
Mapping: {{mapping| 1 3 6 5 7 10 | 0 -20 -52 -31 -50 -89 }}


Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9164
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9164
Line 739: Line 743:
Comma list: 2401/2400, 9801/9800, 14641/14580
Comma list: 2401/2400, 9801/9800, 14641/14580


Mapping: [{{val| 2 6 12 10 13 }}, {{val| 0 -20 -52 -31 -43 }}]
Mapping: {{mapping| 2 6 12 10 13 | 0 -20 -52 -31 -43 }}


Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8788
Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8788
Line 752: Line 756:
Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580
Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580


Mapping: [{{val| 2 6 12 10 13 19 }}, {{val| 0 -20 -52 -31 -43 -82 }}]
Mapping: {{mapping| 2 6 12 10 13 19 | 0 -20 -52 -31 -43 -82 }}


Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8750
Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8750
Line 765: Line 769:
Comma list: 2401/2400, 3025/3024, 1600000/1594323
Comma list: 2401/2400, 3025/3024, 1600000/1594323


Mapping: [{{val| 1 3 6 5 3 }}, {{val| 0 -40 -104 -62 13 }}]
Mapping: {{mapping| 1 3 6 5 3 | 0 -40 -104 -62 13 }}


Optimal tuning (POTE): ~2 = 1\1, ~4096/3993 = 42.4391
Optimal tuning (POTE): ~2 = 1\1, ~4096/3993 = 42.4391
Line 778: Line 782:
Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024
Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024


Mapping: [{{val| 1 3 6 5 3 6 }}, {{val| 0 -40 -104 -62 13 -65 }}]
Mapping: {{mapping| 1 3 6 5 3 6 | 0 -40 -104 -62 13 -65 }}


Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 42.4391
Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 42.4391
Line 793: Line 797:
[[Comma list]]: 16875/16807, 1600000/1594323
[[Comma list]]: 16875/16807, 1600000/1594323


[[Mapping]]: [{{val| 1 8 19 20 }}, {{val| 0 -25 -65 -67 }}]
{{Mapping|legend=1| 1 8 19 20 | 0 -25 -65 -67 }}


{{Multival|legend=1| 25 65 67 45 36 -27 }}
{{Multival|legend=1| 25 65 67 45 36 -27 }}
Line 808: Line 812:
Comma list: 540/539, 1375/1372, 1600000/1594323
Comma list: 540/539, 1375/1372, 1600000/1594323


Mapping: [{{val| 1 8 19 20 5 }}, {{val| 0 -25 -65 -67 -6 }}]
Mapping: {{mapping| 1 8 19 20 5 | 0 -25 -65 -67 -6 }}


Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906
Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906
Line 821: Line 825:
Comma list: 540/539, 729/728, 1375/1372, 2205/2197
Comma list: 540/539, 729/728, 1375/1372, 2205/2197


Mapping: [{{val| 1 8 19 20 5 25 }}, {{val| 0 -25 -65 -67 -6 -83 }}]
Mapping: {{mapping| 1 8 19 20 5 25 | 0 -25 -65 -67 -6 -83 }}


Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913
Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913
Line 831: Line 835:
[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Amity family| ]] <!-- main article -->
[[Category:Amity family| ]] <!-- main article -->
[[Category:Amity|#]] <!-- key article -->
[[Category:Amity| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]

Revision as of 07:46, 10 July 2023

The amity family tempers out the 5-limit amity comma, 1600000/1594323. The generator for the amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. If you are looking for a different kind of neutral third this could be the temperament for you.

Amity

In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives a pure classical major third. Mos scales of 11, 18, 25, 32, 39, 46 or 53 notes are available.

Subgroup: 2.3.5

Comma list: 1600000/1594323

Mapping[1 3 6], 0 -5 -13]]

mapping generators: ~2, ~243/200

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.519

Optimal ET sequence7, 39, 46, 53, 152, 205, 463, 668, 873

Badness: 0.021960

Overview to extensions

The second comma to extend the 5-limit amity include 4375/4374 for amity, 225/224 for houborizic, 65625/65536 for paramity, 126/125 for accord, 245/243 for bamity, 2430/2401 for hamity, 1029/1024 for gamity, 2401/2400 for amicable, and 16875/16807 for familia.

Temperaments discussed elsewhere include:

Septimal amity

Septimal amity can be described as the 46 & 53 temperament, which tempers out 4375/4374 and 5120/5103 in the 7-limit. 99edo is a good tuning, with generator 28\99.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 5120/5103

Mapping[1 3 6 -2], 0 -5 -13 17]]

Wedgie⟨⟨ 5 13 -17 9 -41 -76 ]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.432

Optimal ET sequence7, 32c, 39, 46, 53, 99, 251, 350, 601cd, 951bcdd

Badness: 0.023649

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 5120/5103

Mapping: [1 3 6 -2 21], 0 -5 -13 17 -62]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464

Optimal ET sequence46e, 53, 99e, 152, 555dee, 707ddee, 859bddee

Badness: 0.031506

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 625/624, 847/845

Mapping: [1 3 6 -2 21 17], 0 -5 -13 17 -62 -47]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481

Optimal ET sequence46ef, 53, 99ef, 152f *

* optimal patent val: 205

Badness: 0.028008

Hitchcock

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 2200/2187

Mapping: [1 3 6 -2 6], 0 -5 -13 17 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390

Optimal ET sequence7, 39, 46, 53, 99

Badness: 0.035187

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 325/324

Mapping: [1 3 6 -2 6 2], 0 -5 -13 17 -9 6]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419

Optimal ET sequence7, 39, 46, 53, 99

Badness: 0.022448

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 169/168, 176/175, 273/272

Mapping: [1 3 6 -2 6 2 -1], 0 -5 -13 17 -9 6 18]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366

Optimal ET sequence7, 39, 46, 53, 99

Badness: 0.019395

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189

Mapping: [1 3 6 -2 6 2 -1 0], 0 -5 -13 17 -9 6 18 15]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407

Optimal ET sequence7, 39h, 46, 53, 99h

Badness: 0.017513

Catamite

The catamite temperament (46 & 99ef) tempers out 441/440 (werckisma) and 896/891 (pentacircle) in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit. The word "catamite" itself is a term for male homosexual, but also a play on the words "cata-" (down) and "amity."

Subgroup: 2.3.5.7.11

Comma list: 441/440, 896/891, 4375/4374

Mapping: [1 3 6 -2 -7], 0 -5 -13 17 37]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340

Optimal ET sequence46, 99e, 145, 244e

Badness: 0.040976

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 364/363, 4375/4374

Mapping: [1 3 6 -2 -7 -11], 0 -5 -13 17 37 52]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313

Optimal ET sequence46, 99ef, 145

Badness: 0.034215

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155

Mapping: [1 3 6 -2 -7 -11 -1], 0 -5 -13 17 37 52 18]]

Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313

Optimal ET sequence46, 99ef, 145

Badness: 0.021193

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475

Mapping: [1 3 6 -2 -7 -11 -1 -13], 0 -5 -13 17 37 52 18 61]]

Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325

Optimal ET sequence46, 99ef, 145

Badness: 0.018864

Hemiamity

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 5120/5103

Mapping: [2 1 -1 13 13], 0 5 13 -17 -14]]

mapping generators: ~99/70, ~64/55

Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561

Optimal ET sequence14cde, 46, 106, 152, 350, 502d

Badness: 0.031307

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 847/845, 1716/1715, 3025/3024

Mapping: [2 1 -1 13 13 20], 0 5 13 -17 -14 -29]]

Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583

Optimal ET sequence46, 106f, 152f, 198, 350f, 548cdff

Badness: 0.025784

Accord

Subgroup: 2.3.5.7

Comma list: 126/125, 100352/98415

Mapping[1 3 6 11], 0 -5 -13 -29]]

Wedgie⟨⟨ 5 13 29 9 32 31 ]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 338.993

Optimal ET sequence7d, 39d, 46, 131c, 177c

Badness: 0.095612

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 126/125, 896/891

Mapping: [1 3 6 11 6], 0 -5 -13 -29 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047

Optimal ET sequence7d, 39d, 46, 177c, 223bc, 269bce

Badness: 0.042468

Houborizic

The houborizic temperament (53 & 60) tempers out the marvel comma, 225/224. It is so named because it is closely related to the houboriz tuning (generator: 339.774971 cents).

Subgroup: 2.3.5.7

Comma list: 225/224, 1250000/1240029

Mapping[1 3 6 13], 0 -5 -13 -36]]

Wedgie⟨⟨ 5 13 36 9 43 47 ]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763

Optimal ET sequence7d, 46d, 53, 113, 166

Badness: 0.066638

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 1250000/1240029

Mapping: [1 3 6 13 -9], 0 -5 -13 -36 44]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763

Optimal ET sequence53, 113, 166

Badness: 0.067891

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 325/324, 385/384, 2200/2197

Mapping: [1 3 6 13 -9 2], 0 -5 -13 -36 44 6]]

Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764

Optimal ET sequence53, 113, 166

Badness: 0.032996

Houbor

Subgroup: 2.3.5.7.11

Comma list: 121/120, 225/224, 2200/2187

Mapping: [1 3 6 13 6], 0 -5 -13 -36 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.814

Optimal ET sequence7d, 46d, 53, 60e, 113e

Badness: 0.045232

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 225/224, 275/273, 325/324

Mapping: [1 3 6 13 6 2], 0 -5 -13 -36 -9 6]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.784

Optimal ET sequence7d, 46d, 53, 60e, 113e

Badness: 0.031331

Paramity

The paramity temperament (53 & 311) tempers out the horwell comma (65625/65536) and garischisma (33554432/33480783).

Subgroup: 2.3.5.7

Comma list: 65625/65536, 1600000/1594323

Mapping[1 3 6 -17], 0 -5 -13 70]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.553

Optimal ET sequence53, 205d, 258, 311, 675, 986, 1297c, 2283bc

Badness: 0.113655

11-limit

Subgroup: 2.3.5.7.11

Comma list: 6250/6237, 19712/19683, 41503/41472

Mapping: [1 3 6 -17 36], 0 -5 -13 70 -115]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554

Optimal ET sequence53, 205de, 258, 311, 675, 986

Badness: 0.064853

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683

Mapping: [1 3 6 -17 36 17], 0 -5 -13 70 -115 -47]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554

Optimal ET sequence53, 205de, 258, 311, 675, 986, 1661cf

Badness: 0.030347

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430

Mapping: [1 3 6 -17 36 17 -31], 0 -5 -13 70 -115 -47 124]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555

Optimal ET sequence53, 205deg, 258g, 311, 675, 1661cf, 2336bccf, 3011bccf

Badness: 0.024118

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197

Mapping: [1 3 6 -17 36 17 -31 15], 0 -5 -13 70 -115 -47 124 -38]]

Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555

Optimal ET sequence53, 205deg, 258g, 311, 675, 986, 1661cfh

Badness: 0.017420

Bamity

Bamity has a period of half octave and tempers out the sensamagic comma, 245/243. The name bamity is a contraction of bi- and amity.

Subgroup: 2.3.5.7

Comma list: 245/243, 64827/64000

Mapping[2 1 -1 3], 0 5 13 6]]

mapping generators: ~343/240, ~7/6

Wedgie⟨⟨ 10 26 12 18 -9 -45 ]]

Optimal tuning (POTE): ~343/240 = 1\2, ~7/6 = 260.402

Optimal ET sequence14c, 32c, 46, 60, 106d

Badness: 0.083601

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 245/243, 441/440

Mapping: [2 1 -1 3 3], 0 5 13 6 9]]

Optimal tuning (POTE): ~99/70 = 1\2, ~7/6 = 260.393

Optimal ET sequence14c, 32c, 46, 60e, 106de

Badness: 0.035504

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 245/243, 441/440

Mapping: [2 1 -1 3 3 0], 0 5 13 6 9 17]]

Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 260.618

Optimal ET sequence14cf, 32cf, 46, 106def, 152def

Badness: 0.030885

Hamity

Hamity has a generator of about 430 cents which represents 9/7. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a contraction of half and amity.

Subgroup: 2.3.5.7

Comma list: 2430/2401, 4000/3969

Mapping[1 8 19 15], 0 -10 -26 -19]]

mapping generators: ~2, ~14/9

Wedgie⟨⟨ 10 26 19 18 2 -29 ]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.219

Optimal ET sequence14c, 39d, 53

Badness: 0.073956

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 121/120, 2200/2187

Mapping: [1 8 19 15 15], 0 -10 -26 -19 -18]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192

Optimal ET sequence14c, 39d, 53

Badness: 0.042947

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 121/120, 275/273, 572/567

Mapping: [1 8 19 15 15 30], 0 -10 -26 -19 -18 -41]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216

Optimal ET sequence14cf, 39df, 53

Badness: 0.029753

Gamity

The gamity temperament (46 & 113) tempers out the gamelisma, 1029/1024. It splits the interval of grave major sixth (~400/243, an octave minus acute minor third) in three.

Subgroup: 2.3.5.7

Comma list: 1029/1024, 1071875/1062882

Mapping[1 13 32 -1], 0 -15 -39 5]]

mapping generators: ~2, ~320/189

Wedgie⟨⟨ 15 39 -5 27 -50 -121 ]]

Optimal tuning (POTE): ~2 = 1\1, ~189/160 = 286.787

Optimal ET sequence46, 113, 159

Badness: 0.125733

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 441/440, 1071875/1062882

Mapping: [1 13 32 -1 -11], 0 -15 -39 5 19]]

Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797

Optimal ET sequence46, 113, 159

Badness: 0.051111

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 364/363, 385/384, 10985/10976

Mapping: [1 13 32 -1 -11 -10], 0 -15 -39 5 19 18]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789

Optimal ET sequence46, 113, 159

Badness: 0.030297

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757

Mapping: [1 13 32 -1 -11 -10 -2], 0 -15 -39 5 19 18 8]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795

Optimal ET sequence46, 113, 159

Badness: 0.022036

Trinity

The trinity temperament (152 & 159) tempers out the meter, 703125/702464. It splits the acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction.

Subgroup: 2.3.5.7

Comma list: 703125/702464, 1600000/1594323

Mapping[1 8 19 46], 0 -15 -39 -101]]

Wedgie⟨⟨ 15 39 101 27 118 125 ]]

Optimal tuning (POTE): ~2 = 1\1, ~168/125 = 513.178

Optimal ET sequence152, 311, 463, 774

Badness: 0.119453

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4000/3993, 19712/19683

Mapping: [1 8 19 46 18], 0 -15 -39 -101 -34]]

Optimal tuning (POTE): ~2 = 1\1, ~121/90 = 513.177

Optimal ET sequence152, 311, 463, 774, 1237e

Badness: 0.031296

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689

Mapping: [1 8 19 46 18 64], 0 -15 -39 -101 -34 -141]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182

Optimal ET sequence152f, 311

Badness: 0.026418

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619

Mapping: [1 8 19 46 18 64 -22], 0 -15 -39 -101 -34 -141 61]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186

Optimal ET sequence152f, 159, 311, 1092cdg, 1403cdg, 1714cdeg

Badness: 0.025588

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573

Mapping: [1 8 19 46 18 64 -22 53], 0 -15 -39 -101 -34 -141 61 -114]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185

Optimal ET sequence152f, 159, 311, 1403cdgh, 1714cdegh, 2025cdefgghh, 2336bccdefgghh

Badness: 0.018412

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104

Mapping: [1 8 19 46 18 64 -22 53 49], 0 -15 -39 -101 -34 -141 61 -114 -104]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185

Optimal ET sequence152f, 159, 311, 1092cdgh, 1403cdgh, 1714cdeghi

Badness: 0.014343

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044

Mapping: [1 8 19 46 18 64 -22 53 49 72], 0 -15 -39 -101 -34 -141 61 -114 -104 -157]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186

Optimal ET sequence152fj, 159, 311, 781dh, 1092cdgh, 1403cdgh

Badness: 0.012038

Amicable

The amicable temperament tempers out the amity comma and the canousma in addition to the breedsma, and is closely associated with the canou temperament.

While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 1600000/1594323

Mapping[1 3 6 5], 0 -20 -52 -31]]

Wedgie⟨⟨ 20 52 31 36 -7 -74 ]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.880

Optimal ET sequence99, 212, 311, 410, 1131, 1541b

Badness: 0.045473

Amical

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 131072/130977, 1600000/1594323

Mapping: [1 3 6 5 -8], 0 -20 -52 -31 162]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8843

Optimal ET sequence99, 212e, 311, 410, 721, 1032, 1343

Badness: 0.100668

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206

Mapping: [1 3 6 5 -8 -5], 0 -20 -52 -31 162 123]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8838

Optimal ET sequence99, 212ef, 311, 410, 721, 1032

Badness: 0.049893

Amorous

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 6250/6237, 19712/19683

Mapping: [1 3 6 5 14], 0 -20 -52 -31 -149]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8896

Optimal ET sequence99e, 212, 311, 1145c, 1456cd

Badness: 0.048924

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647

Mapping: [1 3 6 5 14 17], 0 -20 -52 -31 -149 -188]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8910

Optimal ET sequence99ef, 212, 311, 834, 1145c

Badness: 0.034681

Pseudoamical

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372, 1600000/1594323

Mapping: [1 3 6 5 -1], 0 -20 -52 -31 63]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9091

Optimal ET sequence99, 113, 212, 961ccdeee

Badness: 0.085837

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 385/384, 1375/1372, 19773/19712

Mapping: [1 3 6 5 -1 2], 0 -20 -52 -31 63 24]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9127

Optimal ET sequence99, 113, 212, 537cdeff, 749ccdeefff

Badness: 0.047025

Pseudoamorous

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 980000/970299

Mapping: [1 3 6 5 7], 0 -20 -52 -31 -50]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8917

Optimal ET sequence99e, 212e

Badness: 0.056583

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 364/363, 441/440, 1875/1859

Mapping: [1 3 6 5 7 10], 0 -20 -52 -31 -50 -89]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9164

Optimal ET sequence99ef, 113, 212ef

Badness: 0.042826

Floral

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 9801/9800, 14641/14580

Mapping: [2 6 12 10 13], 0 -20 -52 -31 -43]]

Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8788

Optimal ET sequence198, 212, 410

Badness: 0.065110

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580

Mapping: [2 6 12 10 13 19], 0 -20 -52 -31 -43 -82]]

Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8750

Optimal ET sequence198, 410

Badness: 0.037013

Humorous

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 1600000/1594323

Mapping: [1 3 6 5 3], 0 -40 -104 -62 13]]

Optimal tuning (POTE): ~2 = 1\1, ~4096/3993 = 42.4391

Optimal ET sequence85c, 113, 198, 311, 509, 820

Badness: 0.058249

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024

Mapping: [1 3 6 5 3 6], 0 -40 -104 -62 13 -65]]

Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 42.4391

Optimal ET sequence85c, 113, 198, 311, 509, 820f

Badness: 0.028267

Familia

The familia temperament (113 & 152) tempers out the mirkwai comma, 16875/16807. It splits the interval of acute minor tenth (~243/100) in five.

Subgroup: 2.3.5.7

Comma list: 16875/16807, 1600000/1594323

Mapping[1 8 19 20], 0 -25 -65 -67]]

Wedgie⟨⟨ 25 65 67 45 36 -27 ]]

Optimal tuning (POTE): ~2 = 1\1, ~11907/10000 = 307.941

Optimal ET sequence39d, 74cd, 113, 152, 265, 417, 986d

Badness: 0.144551

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 1375/1372, 1600000/1594323

Mapping: [1 8 19 20 5], 0 -25 -65 -67 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906

Optimal ET sequence39d, 74cd, 113, 152, 417, 569de, 721de

Badness: 0.051740

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 729/728, 1375/1372, 2205/2197

Mapping: [1 8 19 20 5 25], 0 -25 -65 -67 -6 -83]]

Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913

Optimal ET sequence39df, 74cdf, 113, 152f, 265, 417f

Badness: 0.038473