Amity family: Difference between revisions
No edit summary |
Update keys and normalize mappings |
||
Line 10: | Line 10: | ||
[[Comma list]]: 1600000/1594323 | [[Comma list]]: 1600000/1594323 | ||
{{Mapping|legend=1| 1 3 6 | 0 -5 -13 }} | |||
: mapping generators: ~2, ~243/200 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.519 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.519 | ||
Line 24: | Line 24: | ||
Temperaments discussed elsewhere include: | Temperaments discussed elsewhere include: | ||
* ''[[Chromat]]'' | * ''[[Chromat]]'' → [[Hemimage temperaments #Chromat]] (+10976/10935) | ||
* ''[[Witch]]'' | * ''[[Witch]]'' → [[Wizmic microtemperaments #Witch]] (+420175/419904) | ||
== Septimal amity == | == Septimal amity == | ||
Line 36: | Line 36: | ||
[[Comma list]]: 4375/4374, 5120/5103 | [[Comma list]]: 4375/4374, 5120/5103 | ||
{{Mapping|legend=1| 1 3 6 -2 | 0 -5 -13 17 }} | |||
{{Multival|legend=1| 5 13 -17 9 -41 -76 }} | {{Multival|legend=1| 5 13 -17 9 -41 -76 }} | ||
Line 51: | Line 51: | ||
Comma list: 540/539, 4375/4374, 5120/5103 | Comma list: 540/539, 4375/4374, 5120/5103 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 21 | 0 -5 -13 17 -62 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464 | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464 | ||
Line 64: | Line 64: | ||
Comma list: 352/351, 540/539, 625/624, 847/845 | Comma list: 352/351, 540/539, 625/624, 847/845 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 21 17 | 0 -5 -13 17 -62 -47 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481 | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481 | ||
Line 79: | Line 79: | ||
Comma list: 121/120, 176/175, 2200/2187 | Comma list: 121/120, 176/175, 2200/2187 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 6 | 0 -5 -13 17 -9 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390 | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390 | ||
Line 92: | Line 92: | ||
Comma list: 121/120, 169/168, 176/175, 325/324 | Comma list: 121/120, 169/168, 176/175, 325/324 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 6 2 | 0 -5 -13 17 -9 6 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419 | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419 | ||
Line 105: | Line 105: | ||
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272 | Comma list: 121/120, 154/153, 169/168, 176/175, 273/272 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 6 2 -1 | 0 -5 -13 17 -9 6 18 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366 | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366 | ||
Line 118: | Line 118: | ||
Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189 | Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 6 2 -1 0 | 0 -5 -13 17 -9 6 18 15 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407 | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407 | ||
Line 133: | Line 133: | ||
Comma list: 441/440, 896/891, 4375/4374 | Comma list: 441/440, 896/891, 4375/4374 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 -7 | 0 -5 -13 17 37 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340 | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340 | ||
Line 146: | Line 146: | ||
Comma list: 196/195, 352/351, 364/363, 4375/4374 | Comma list: 196/195, 352/351, 364/363, 4375/4374 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 -7 -11 | 0 -5 -13 17 37 52 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313 | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313 | ||
Line 159: | Line 159: | ||
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155 | Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 -7 -11 -1 | 0 -5 -13 17 37 52 18 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313 | Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313 | ||
Line 172: | Line 172: | ||
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475 | Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -2 -7 -11 -1 -13 | 0 -5 -13 17 37 52 18 61 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325 | Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325 | ||
Line 185: | Line 185: | ||
Comma list: 3025/3024, 4375/4374, 5120/5103 | Comma list: 3025/3024, 4375/4374, 5120/5103 | ||
Mapping: | Mapping: {{mapping| 2 1 -1 13 13 | 0 5 13 -17 -14 }} | ||
: mapping generators: ~99/70, ~64/55 | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561 | Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561 | ||
Line 200: | Line 200: | ||
Comma list: 352/351, 847/845, 1716/1715, 3025/3024 | Comma list: 352/351, 847/845, 1716/1715, 3025/3024 | ||
Mapping: | Mapping: {{mapping| 2 1 -1 13 13 20 | 0 5 13 -17 -14 -29 }} | ||
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583 | Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583 | ||
Line 213: | Line 213: | ||
[[Comma list]]: 126/125, 100352/98415 | [[Comma list]]: 126/125, 100352/98415 | ||
{{Mapping|legend=1| 1 3 6 11 | 0 -5 -13 -29 }} | |||
{{Multival|legend=1| 5 13 29 9 32 31 }} | {{Multival|legend=1| 5 13 29 9 32 31 }} | ||
Line 228: | Line 228: | ||
Comma list: 121/120, 126/125, 896/891 | Comma list: 121/120, 126/125, 896/891 | ||
Mapping: | Mapping: {{mapping| 1 3 6 11 6 | 0 -5 -13 -29 -9 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047 | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047 | ||
Line 237: | Line 237: | ||
== Houborizic == | == Houborizic == | ||
The ''houborizic'' temperament (53& | The ''houborizic'' temperament (53 & 60) tempers out the [[marvel comma]], 225/224. It is so named because it is closely related to the '''houboriz tuning''' (generator: 339.774971 cents). | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 243: | Line 243: | ||
[[Comma list]]: 225/224, 1250000/1240029 | [[Comma list]]: 225/224, 1250000/1240029 | ||
{{Mapping|legend=1| 1 3 6 13 | 0 -5 -13 -36 }} | |||
{{Multival|legend=1| 5 13 36 9 43 47 }} | {{Multival|legend=1| 5 13 36 9 43 47 }} | ||
Line 258: | Line 258: | ||
Comma list: 225/224, 385/384, 1250000/1240029 | Comma list: 225/224, 385/384, 1250000/1240029 | ||
Mapping: | Mapping: {{mapping| 1 3 6 13 -9 | 0 -5 -13 -36 44 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763 | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763 | ||
Line 271: | Line 271: | ||
Comma list: 225/224, 325/324, 385/384, 2200/2197 | Comma list: 225/224, 325/324, 385/384, 2200/2197 | ||
Mapping: | Mapping: {{mapping| 1 3 6 13 -9 2 | 0 -5 -13 -36 44 6 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764 | Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764 | ||
Line 312: | Line 312: | ||
[[Comma list]]: 65625/65536, 1600000/1594323 | [[Comma list]]: 65625/65536, 1600000/1594323 | ||
{{Mapping|legend=1|1 3 6 -17 | 0 -5 -13 70 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.553 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.553 | ||
Line 325: | Line 325: | ||
Comma list: 6250/6237, 19712/19683, 41503/41472 | Comma list: 6250/6237, 19712/19683, 41503/41472 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -17 36 | 0 -5 -13 70 -115 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554 | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554 | ||
Line 338: | Line 338: | ||
Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683 | Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -17 36 17 | 0 -5 -13 70 -115 -47 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554 | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554 | ||
Line 351: | Line 351: | ||
Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430 | Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -17 36 17 -31 | 0 -5 -13 70 -115 -47 124 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555 | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555 | ||
Line 364: | Line 364: | ||
Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197 | Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197 | ||
Mapping: | Mapping: {{mapping| 1 3 6 -17 36 17 -31 15 | 0 -5 -13 70 -115 -47 124 -38 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555 | Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555 | ||
Line 373: | Line 373: | ||
== Bamity == | == Bamity == | ||
Bamity has a period of half octave and tempers out the sensamagic comma, [[245/243]]. The name ''bamity'' is a | Bamity has a period of half octave and tempers out the sensamagic comma, [[245/243]]. The name ''bamity'' is a contraction of ''bi-'' and ''amity''. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 379: | Line 379: | ||
[[Comma list]]: 245/243, 64827/64000 | [[Comma list]]: 245/243, 64827/64000 | ||
{{Mapping|legend=1| 2 1 -1 3 | 0 5 13 6 }} | |||
: mapping generators: ~343/240, ~7/6 | |||
{{Multival|legend=1| 10 26 12 18 -9 -45 }} | {{Multival|legend=1| 10 26 12 18 -9 -45 }} | ||
Line 396: | Line 396: | ||
Comma list: 121/120, 245/243, 441/440 | Comma list: 121/120, 245/243, 441/440 | ||
Mapping: | Mapping: {{mapping| 2 1 -1 3 3 | 0 5 13 6 9 }} | ||
Optimal tuning (POTE): ~99/70 = 1\2, ~7/6 = 260.393 | Optimal tuning (POTE): ~99/70 = 1\2, ~7/6 = 260.393 | ||
Line 409: | Line 409: | ||
Comma list: 91/90, 121/120, 245/243, 441/440 | Comma list: 91/90, 121/120, 245/243, 441/440 | ||
Mapping: | Mapping: {{mapping| 2 1 -1 3 3 0 | 0 5 13 6 9 17 }} | ||
Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 260.618 | Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 260.618 | ||
Line 418: | Line 418: | ||
== Hamity == | == Hamity == | ||
Hamity has a generator of about 430 cents which represents [[9/7]]. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a | Hamity has a generator of about 430 cents which represents [[9/7]]. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a contraction of ''half'' and ''amity''. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 424: | Line 424: | ||
[[Comma list]]: 2430/2401, 4000/3969 | [[Comma list]]: 2430/2401, 4000/3969 | ||
{{Mapping|legend=1| 1 8 19 15 | 0 -10 -26 -19 }} | |||
: mapping generators: ~2, ~14/9 | |||
{{Multival|legend=1| 10 26 19 18 2 -29 }} | {{Multival|legend=1| 10 26 19 18 2 -29 }} | ||
Line 439: | Line 441: | ||
Comma list: 99/98, 121/120, 2200/2187 | Comma list: 99/98, 121/120, 2200/2187 | ||
Mapping: | Mapping: {{mapping| 1 8 19 15 15 | 0 -10 -26 -19 -18 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192 | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192 | ||
Line 452: | Line 454: | ||
Comma list: 99/98, 121/120, 275/273, 572/567 | Comma list: 99/98, 121/120, 275/273, 572/567 | ||
Mapping: | Mapping: {{mapping| 1 8 19 15 15 30 | 0 -10 -26 -19 -18 -41 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216 | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216 | ||
Line 467: | Line 469: | ||
[[Comma list]]: 1029/1024, 1071875/1062882 | [[Comma list]]: 1029/1024, 1071875/1062882 | ||
{{Mapping|legend=1| 1 13 32 -1 | 0 -15 -39 5 }} | |||
: mapping generators: ~2, ~320/189 | |||
{{Multival|legend=1| 15 39 -5 27 -50 -121 }} | {{Multival|legend=1| 15 39 -5 27 -50 -121 }} | ||
Line 482: | Line 486: | ||
Comma list: 385/384, 441/440, 1071875/1062882 | Comma list: 385/384, 441/440, 1071875/1062882 | ||
Mapping: | Mapping: {{mapping| 1 13 32 -1 -11 | 0 -15 -39 5 19 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797 | Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797 | ||
Line 495: | Line 499: | ||
Comma list: 325/324, 364/363, 385/384, 10985/10976 | Comma list: 325/324, 364/363, 385/384, 10985/10976 | ||
Mapping: | Mapping: {{mapping| 1 13 32 -1 -11 -10 | 0 -15 -39 5 19 18 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789 | Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789 | ||
Line 508: | Line 512: | ||
Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757 | Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757 | ||
Mapping: | Mapping: {{mapping| 1 13 32 -1 -11 -10 -2 | 0 -15 -39 5 19 18 8 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795 | Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795 | ||
Line 517: | Line 521: | ||
== Trinity == | == Trinity == | ||
The | The trinity temperament (152 & 159) tempers out the [[meter]], 703125/702464. It splits the acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 523: | Line 527: | ||
[[Comma list]]: 703125/702464, 1600000/1594323 | [[Comma list]]: 703125/702464, 1600000/1594323 | ||
{{Mapping|legend=1| 1 8 19 46 | 0 -15 -39 -101 }} | |||
{{Multival|legend=1| 15 39 101 27 118 125 }} | {{Multival|legend=1| 15 39 101 27 118 125 }} | ||
Line 538: | Line 542: | ||
Comma list: 3025/3024, 4000/3993, 19712/19683 | Comma list: 3025/3024, 4000/3993, 19712/19683 | ||
Mapping: | Mapping: {{mapping| 1 8 19 46 18 | 0 -15 -39 -101 -34 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~121/90 = 513.177 | ||
{{Optimal ET sequence|legend=1| 152, 311, 463, 774, 1237e }} | {{Optimal ET sequence|legend=1| 152, 311, 463, 774, 1237e }} | ||
Line 551: | Line 555: | ||
Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689 | Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689 | ||
Mapping: | Mapping: {{mapping| 1 8 19 46 18 64 | 0 -15 -39 -101 -34 -141 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182 | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182 | ||
Line 564: | Line 568: | ||
Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619 | Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619 | ||
Mapping: | Mapping: {{mapping| 1 8 19 46 18 64 -22 | 0 -15 -39 -101 -34 -141 61 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186 | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186 | ||
Line 577: | Line 581: | ||
Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573 | Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573 | ||
Mapping: | Mapping: {{mapping| 1 8 19 46 18 64 -22 53 | 0 -15 -39 -101 -34 -141 61 -114 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185 | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185 | ||
Line 590: | Line 594: | ||
Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104 | Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104 | ||
Mapping: | Mapping: {{mapping| 1 8 19 46 18 64 -22 53 49 | 0 -15 -39 -101 -34 -141 61 -114 -104 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185 | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185 | ||
Line 603: | Line 607: | ||
Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044 | Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044 | ||
Mapping: | Mapping: {{mapping| 1 8 19 46 18 64 -22 53 49 72 | 0 -15 -39 -101 -34 -141 61 -114 -104 -157 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186 | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186 | ||
Line 616: | Line 620: | ||
While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two. | While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 1600000/1594323 | [[Comma list]]: 2401/2400, 1600000/1594323 | ||
{{Mapping|legend=1| 1 3 6 5 | 0 -20 -52 -31 }} | |||
{{Multival|legend=1| 20 52 31 36 -7 -74 }} | {{Multival|legend=1| 20 52 31 36 -7 -74 }} | ||
Line 635: | Line 639: | ||
Comma list: 2401/2400, 131072/130977, 1600000/1594323 | Comma list: 2401/2400, 131072/130977, 1600000/1594323 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 -8 | 0 -20 -52 -31 162 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8843 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8843 | ||
Line 648: | Line 652: | ||
Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206 | Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 -8 -5 | 0 -20 -52 -31 162 123 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8838 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8838 | ||
Line 661: | Line 665: | ||
Comma list: 2401/2400, 6250/6237, 19712/19683 | Comma list: 2401/2400, 6250/6237, 19712/19683 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 14 | 0 -20 -52 -31 -149 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8896 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8896 | ||
Line 674: | Line 678: | ||
Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647 | Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 14 17 | 0 -20 -52 -31 -149 -188 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8910 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8910 | ||
Line 687: | Line 691: | ||
Comma list: 385/384, 1375/1372, 1600000/1594323 | Comma list: 385/384, 1375/1372, 1600000/1594323 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 -1 | 0 -20 -52 -31 63 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9091 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9091 | ||
Line 700: | Line 704: | ||
Comma list: 325/324, 385/384, 1375/1372, 19773/19712 | Comma list: 325/324, 385/384, 1375/1372, 19773/19712 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 -1 2 | 0 -20 -52 -31 63 24 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9127 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9127 | ||
Line 713: | Line 717: | ||
Comma list: 243/242, 441/440, 980000/970299 | Comma list: 243/242, 441/440, 980000/970299 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 7 | 0 -20 -52 -31 -50 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8917 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8917 | ||
Line 726: | Line 730: | ||
Comma list: 243/242, 364/363, 441/440, 1875/1859 | Comma list: 243/242, 364/363, 441/440, 1875/1859 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 7 10 | 0 -20 -52 -31 -50 -89 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9164 | Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9164 | ||
Line 739: | Line 743: | ||
Comma list: 2401/2400, 9801/9800, 14641/14580 | Comma list: 2401/2400, 9801/9800, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 6 12 10 13 | 0 -20 -52 -31 -43 }} | ||
Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8788 | Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8788 | ||
Line 752: | Line 756: | ||
Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580 | Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 6 12 10 13 19 | 0 -20 -52 -31 -43 -82 }} | ||
Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8750 | Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8750 | ||
Line 765: | Line 769: | ||
Comma list: 2401/2400, 3025/3024, 1600000/1594323 | Comma list: 2401/2400, 3025/3024, 1600000/1594323 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 3 | 0 -40 -104 -62 13 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~4096/3993 = 42.4391 | Optimal tuning (POTE): ~2 = 1\1, ~4096/3993 = 42.4391 | ||
Line 778: | Line 782: | ||
Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024 | Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024 | ||
Mapping: | Mapping: {{mapping| 1 3 6 5 3 6 | 0 -40 -104 -62 13 -65 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 42.4391 | Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 42.4391 | ||
Line 793: | Line 797: | ||
[[Comma list]]: 16875/16807, 1600000/1594323 | [[Comma list]]: 16875/16807, 1600000/1594323 | ||
{{Mapping|legend=1| 1 8 19 20 | 0 -25 -65 -67 }} | |||
{{Multival|legend=1| 25 65 67 45 36 -27 }} | {{Multival|legend=1| 25 65 67 45 36 -27 }} | ||
Line 808: | Line 812: | ||
Comma list: 540/539, 1375/1372, 1600000/1594323 | Comma list: 540/539, 1375/1372, 1600000/1594323 | ||
Mapping: | Mapping: {{mapping| 1 8 19 20 5 | 0 -25 -65 -67 -6 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906 | Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906 | ||
Line 821: | Line 825: | ||
Comma list: 540/539, 729/728, 1375/1372, 2205/2197 | Comma list: 540/539, 729/728, 1375/1372, 2205/2197 | ||
Mapping: | Mapping: {{mapping| 1 8 19 20 5 25 | 0 -25 -65 -67 -6 -83 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913 | Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913 | ||
Line 831: | Line 835: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Amity family| ]] <!-- main article --> | [[Category:Amity family| ]] <!-- main article --> | ||
[[Category:Amity| | [[Category:Amity| ]] <!-- key article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Revision as of 07:46, 10 July 2023
The amity family tempers out the 5-limit amity comma, 1600000/1594323. The generator for the amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. If you are looking for a different kind of neutral third this could be the temperament for you.
Amity
In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives a pure classical major third. Mos scales of 11, 18, 25, 32, 39, 46 or 53 notes are available.
Subgroup: 2.3.5
Comma list: 1600000/1594323
Mapping: [⟨1 3 6], ⟨0 -5 -13]]
- mapping generators: ~2, ~243/200
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.519
Optimal ET sequence: 7, 39, 46, 53, 152, 205, 463, 668, 873
Badness: 0.021960
Overview to extensions
The second comma to extend the 5-limit amity include 4375/4374 for amity, 225/224 for houborizic, 65625/65536 for paramity, 126/125 for accord, 245/243 for bamity, 2430/2401 for hamity, 1029/1024 for gamity, 2401/2400 for amicable, and 16875/16807 for familia.
Temperaments discussed elsewhere include:
- Chromat → Hemimage temperaments #Chromat (+10976/10935)
- Witch → Wizmic microtemperaments #Witch (+420175/419904)
Septimal amity
Septimal amity can be described as the 46 & 53 temperament, which tempers out 4375/4374 and 5120/5103 in the 7-limit. 99edo is a good tuning, with generator 28\99.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2], ⟨0 -5 -13 17]]
Wedgie: ⟨⟨ 5 13 -17 9 -41 -76 ]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.432
Optimal ET sequence: 7, 32c, 39, 46, 53, 99, 251, 350, 601cd, 951bcdd
Badness: 0.023649
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2 21], ⟨0 -5 -13 17 -62]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464
Optimal ET sequence: 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee
Badness: 0.031506
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 625/624, 847/845
Mapping: [⟨1 3 6 -2 21 17], ⟨0 -5 -13 17 -62 -47]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481
Optimal ET sequence: 46ef, 53, 99ef, 152f *
* optimal patent val: 205
Badness: 0.028008
Hitchcock
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 2200/2187
Mapping: [⟨1 3 6 -2 6], ⟨0 -5 -13 17 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390
Optimal ET sequence: 7, 39, 46, 53, 99
Badness: 0.035187
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 176/175, 325/324
Mapping: [⟨1 3 6 -2 6 2], ⟨0 -5 -13 17 -9 6]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419
Optimal ET sequence: 7, 39, 46, 53, 99
Badness: 0.022448
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272
Mapping: [⟨1 3 6 -2 6 2 -1], ⟨0 -5 -13 17 -9 6 18]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366
Optimal ET sequence: 7, 39, 46, 53, 99
Badness: 0.019395
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189
Mapping: [⟨1 3 6 -2 6 2 -1 0], ⟨0 -5 -13 17 -9 6 18 15]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407
Optimal ET sequence: 7, 39h, 46, 53, 99h
Badness: 0.017513
Catamite
The catamite temperament (46 & 99ef) tempers out 441/440 (werckisma) and 896/891 (pentacircle) in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit. The word "catamite" itself is a term for male homosexual, but also a play on the words "cata-" (down) and "amity."
Subgroup: 2.3.5.7.11
Comma list: 441/440, 896/891, 4375/4374
Mapping: [⟨1 3 6 -2 -7], ⟨0 -5 -13 17 37]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340
Optimal ET sequence: 46, 99e, 145, 244e
Badness: 0.040976
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 364/363, 4375/4374
Mapping: [⟨1 3 6 -2 -7 -11], ⟨0 -5 -13 17 37 52]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313
Optimal ET sequence: 46, 99ef, 145
Badness: 0.034215
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155
Mapping: [⟨1 3 6 -2 -7 -11 -1], ⟨0 -5 -13 17 37 52 18]]
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313
Optimal ET sequence: 46, 99ef, 145
Badness: 0.021193
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475
Mapping: [⟨1 3 6 -2 -7 -11 -1 -13], ⟨0 -5 -13 17 37 52 18 61]]
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325
Optimal ET sequence: 46, 99ef, 145
Badness: 0.018864
Hemiamity
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5120/5103
Mapping: [⟨2 1 -1 13 13], ⟨0 5 13 -17 -14]]
- mapping generators: ~99/70, ~64/55
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561
Optimal ET sequence: 14cde, 46, 106, 152, 350, 502d
Badness: 0.031307
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 847/845, 1716/1715, 3025/3024
Mapping: [⟨2 1 -1 13 13 20], ⟨0 5 13 -17 -14 -29]]
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583
Optimal ET sequence: 46, 106f, 152f, 198, 350f, 548cdff
Badness: 0.025784
Accord
Subgroup: 2.3.5.7
Comma list: 126/125, 100352/98415
Mapping: [⟨1 3 6 11], ⟨0 -5 -13 -29]]
Wedgie: ⟨⟨ 5 13 29 9 32 31 ]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 338.993
Optimal ET sequence: 7d, 39d, 46, 131c, 177c
Badness: 0.095612
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 126/125, 896/891
Mapping: [⟨1 3 6 11 6], ⟨0 -5 -13 -29 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047
Optimal ET sequence: 7d, 39d, 46, 177c, 223bc, 269bce
Badness: 0.042468
Houborizic
The houborizic temperament (53 & 60) tempers out the marvel comma, 225/224. It is so named because it is closely related to the houboriz tuning (generator: 339.774971 cents).
Subgroup: 2.3.5.7
Comma list: 225/224, 1250000/1240029
Mapping: [⟨1 3 6 13], ⟨0 -5 -13 -36]]
Wedgie: ⟨⟨ 5 13 36 9 43 47 ]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763
Optimal ET sequence: 7d, 46d, 53, 113, 166
Badness: 0.066638
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 385/384, 1250000/1240029
Mapping: [⟨1 3 6 13 -9], ⟨0 -5 -13 -36 44]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763
Optimal ET sequence: 53, 113, 166
Badness: 0.067891
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 325/324, 385/384, 2200/2197
Mapping: [⟨1 3 6 13 -9 2], ⟨0 -5 -13 -36 44 6]]
Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764
Optimal ET sequence: 53, 113, 166
Badness: 0.032996
Houbor
Subgroup: 2.3.5.7.11
Comma list: 121/120, 225/224, 2200/2187
Mapping: [⟨1 3 6 13 6], ⟨0 -5 -13 -36 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.814
Optimal ET sequence: 7d, 46d, 53, 60e, 113e
Badness: 0.045232
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 225/224, 275/273, 325/324
Mapping: [⟨1 3 6 13 6 2], ⟨0 -5 -13 -36 -9 6]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.784
Optimal ET sequence: 7d, 46d, 53, 60e, 113e
Badness: 0.031331
Paramity
The paramity temperament (53 & 311) tempers out the horwell comma (65625/65536) and garischisma (33554432/33480783).
Subgroup: 2.3.5.7
Comma list: 65625/65536, 1600000/1594323
Mapping: [⟨1 3 6 -17], ⟨0 -5 -13 70]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.553
Optimal ET sequence: 53, 205d, 258, 311, 675, 986, 1297c, 2283bc
Badness: 0.113655
11-limit
Subgroup: 2.3.5.7.11
Comma list: 6250/6237, 19712/19683, 41503/41472
Mapping: [⟨1 3 6 -17 36], ⟨0 -5 -13 70 -115]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Optimal ET sequence: 53, 205de, 258, 311, 675, 986
Badness: 0.064853
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683
Mapping: [⟨1 3 6 -17 36 17], ⟨0 -5 -13 70 -115 -47]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Optimal ET sequence: 53, 205de, 258, 311, 675, 986, 1661cf
Badness: 0.030347
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430
Mapping: [⟨1 3 6 -17 36 17 -31], ⟨0 -5 -13 70 -115 -47 124]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555
Optimal ET sequence: 53, 205deg, 258g, 311, 675, 1661cf, 2336bccf, 3011bccf
Badness: 0.024118
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197
Mapping: [⟨1 3 6 -17 36 17 -31 15], ⟨0 -5 -13 70 -115 -47 124 -38]]
Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555
Optimal ET sequence: 53, 205deg, 258g, 311, 675, 986, 1661cfh
Badness: 0.017420
Bamity
Bamity has a period of half octave and tempers out the sensamagic comma, 245/243. The name bamity is a contraction of bi- and amity.
Subgroup: 2.3.5.7
Comma list: 245/243, 64827/64000
Mapping: [⟨2 1 -1 3], ⟨0 5 13 6]]
- mapping generators: ~343/240, ~7/6
Wedgie: ⟨⟨ 10 26 12 18 -9 -45 ]]
Optimal tuning (POTE): ~343/240 = 1\2, ~7/6 = 260.402
Optimal ET sequence: 14c, 32c, 46, 60, 106d
Badness: 0.083601
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 245/243, 441/440
Mapping: [⟨2 1 -1 3 3], ⟨0 5 13 6 9]]
Optimal tuning (POTE): ~99/70 = 1\2, ~7/6 = 260.393
Optimal ET sequence: 14c, 32c, 46, 60e, 106de
Badness: 0.035504
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 121/120, 245/243, 441/440
Mapping: [⟨2 1 -1 3 3 0], ⟨0 5 13 6 9 17]]
Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 260.618
Optimal ET sequence: 14cf, 32cf, 46, 106def, 152def
Badness: 0.030885
Hamity
Hamity has a generator of about 430 cents which represents 9/7. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a contraction of half and amity.
Subgroup: 2.3.5.7
Comma list: 2430/2401, 4000/3969
Mapping: [⟨1 8 19 15], ⟨0 -10 -26 -19]]
- mapping generators: ~2, ~14/9
Wedgie: ⟨⟨ 10 26 19 18 2 -29 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.219
Optimal ET sequence: 14c, 39d, 53
Badness: 0.073956
11-limit
Subgroup: 2.3.5.7.11
Comma list: 99/98, 121/120, 2200/2187
Mapping: [⟨1 8 19 15 15], ⟨0 -10 -26 -19 -18]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192
Optimal ET sequence: 14c, 39d, 53
Badness: 0.042947
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 121/120, 275/273, 572/567
Mapping: [⟨1 8 19 15 15 30], ⟨0 -10 -26 -19 -18 -41]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216
Optimal ET sequence: 14cf, 39df, 53
Badness: 0.029753
Gamity
The gamity temperament (46 & 113) tempers out the gamelisma, 1029/1024. It splits the interval of grave major sixth (~400/243, an octave minus acute minor third) in three.
Subgroup: 2.3.5.7
Comma list: 1029/1024, 1071875/1062882
Mapping: [⟨1 13 32 -1], ⟨0 -15 -39 5]]
- mapping generators: ~2, ~320/189
Wedgie: ⟨⟨ 15 39 -5 27 -50 -121 ]]
Optimal tuning (POTE): ~2 = 1\1, ~189/160 = 286.787
Optimal ET sequence: 46, 113, 159
Badness: 0.125733
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 441/440, 1071875/1062882
Mapping: [⟨1 13 32 -1 -11], ⟨0 -15 -39 5 19]]
Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797
Optimal ET sequence: 46, 113, 159
Badness: 0.051111
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 385/384, 10985/10976
Mapping: [⟨1 13 32 -1 -11 -10], ⟨0 -15 -39 5 19 18]]
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789
Optimal ET sequence: 46, 113, 159
Badness: 0.030297
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757
Mapping: [⟨1 13 32 -1 -11 -10 -2], ⟨0 -15 -39 5 19 18 8]]
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795
Optimal ET sequence: 46, 113, 159
Badness: 0.022036
Trinity
The trinity temperament (152 & 159) tempers out the meter, 703125/702464. It splits the acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction.
Subgroup: 2.3.5.7
Comma list: 703125/702464, 1600000/1594323
Mapping: [⟨1 8 19 46], ⟨0 -15 -39 -101]]
Wedgie: ⟨⟨ 15 39 101 27 118 125 ]]
Optimal tuning (POTE): ~2 = 1\1, ~168/125 = 513.178
Optimal ET sequence: 152, 311, 463, 774
Badness: 0.119453
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 19712/19683
Mapping: [⟨1 8 19 46 18], ⟨0 -15 -39 -101 -34]]
Optimal tuning (POTE): ~2 = 1\1, ~121/90 = 513.177
Optimal ET sequence: 152, 311, 463, 774, 1237e
Badness: 0.031296
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689
Mapping: [⟨1 8 19 46 18 64], ⟨0 -15 -39 -101 -34 -141]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182
Optimal ET sequence: 152f, 311
Badness: 0.026418
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619
Mapping: [⟨1 8 19 46 18 64 -22], ⟨0 -15 -39 -101 -34 -141 61]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Optimal ET sequence: 152f, 159, 311, 1092cdg, 1403cdg, 1714cdeg
Badness: 0.025588
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573
Mapping: [⟨1 8 19 46 18 64 -22 53], ⟨0 -15 -39 -101 -34 -141 61 -114]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Optimal ET sequence: 152f, 159, 311, 1403cdgh, 1714cdegh, 2025cdefgghh, 2336bccdefgghh
Badness: 0.018412
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104
Mapping: [⟨1 8 19 46 18 64 -22 53 49], ⟨0 -15 -39 -101 -34 -141 61 -114 -104]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Optimal ET sequence: 152f, 159, 311, 1092cdgh, 1403cdgh, 1714cdeghi
Badness: 0.014343
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044
Mapping: [⟨1 8 19 46 18 64 -22 53 49 72], ⟨0 -15 -39 -101 -34 -141 61 -114 -104 -157]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Optimal ET sequence: 152fj, 159, 311, 781dh, 1092cdgh, 1403cdgh
Badness: 0.012038
Amicable
The amicable temperament tempers out the amity comma and the canousma in addition to the breedsma, and is closely associated with the canou temperament.
While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.
Subgroup: 2.3.5.7
Comma list: 2401/2400, 1600000/1594323
Mapping: [⟨1 3 6 5], ⟨0 -20 -52 -31]]
Wedgie: ⟨⟨ 20 52 31 36 -7 -74 ]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.880
Optimal ET sequence: 99, 212, 311, 410, 1131, 1541b
Badness: 0.045473
Amical
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 131072/130977, 1600000/1594323
Mapping: [⟨1 3 6 5 -8], ⟨0 -20 -52 -31 162]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8843
Optimal ET sequence: 99, 212e, 311, 410, 721, 1032, 1343
Badness: 0.100668
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206
Mapping: [⟨1 3 6 5 -8 -5], ⟨0 -20 -52 -31 162 123]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8838
Optimal ET sequence: 99, 212ef, 311, 410, 721, 1032
Badness: 0.049893
Amorous
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 6250/6237, 19712/19683
Mapping: [⟨1 3 6 5 14], ⟨0 -20 -52 -31 -149]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8896
Optimal ET sequence: 99e, 212, 311, 1145c, 1456cd
Badness: 0.048924
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647
Mapping: [⟨1 3 6 5 14 17], ⟨0 -20 -52 -31 -149 -188]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8910
Optimal ET sequence: 99ef, 212, 311, 834, 1145c
Badness: 0.034681
Pseudoamical
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372, 1600000/1594323
Mapping: [⟨1 3 6 5 -1], ⟨0 -20 -52 -31 63]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9091
Optimal ET sequence: 99, 113, 212, 961ccdeee
Badness: 0.085837
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 1375/1372, 19773/19712
Mapping: [⟨1 3 6 5 -1 2], ⟨0 -20 -52 -31 63 24]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9127
Optimal ET sequence: 99, 113, 212, 537cdeff, 749ccdeefff
Badness: 0.047025
Pseudoamorous
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 980000/970299
Mapping: [⟨1 3 6 5 7], ⟨0 -20 -52 -31 -50]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8917
Optimal ET sequence: 99e, 212e
Badness: 0.056583
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 364/363, 441/440, 1875/1859
Mapping: [⟨1 3 6 5 7 10], ⟨0 -20 -52 -31 -50 -89]]
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9164
Optimal ET sequence: 99ef, 113, 212ef
Badness: 0.042826
Floral
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 9801/9800, 14641/14580
Mapping: [⟨2 6 12 10 13], ⟨0 -20 -52 -31 -43]]
Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8788
Optimal ET sequence: 198, 212, 410
Badness: 0.065110
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580
Mapping: [⟨2 6 12 10 13 19], ⟨0 -20 -52 -31 -43 -82]]
Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8750
Badness: 0.037013
Humorous
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024, 1600000/1594323
Mapping: [⟨1 3 6 5 3], ⟨0 -40 -104 -62 13]]
Optimal tuning (POTE): ~2 = 1\1, ~4096/3993 = 42.4391
Optimal ET sequence: 85c, 113, 198, 311, 509, 820
Badness: 0.058249
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024
Mapping: [⟨1 3 6 5 3 6], ⟨0 -40 -104 -62 13 -65]]
Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 42.4391
Optimal ET sequence: 85c, 113, 198, 311, 509, 820f
Badness: 0.028267
Familia
The familia temperament (113 & 152) tempers out the mirkwai comma, 16875/16807. It splits the interval of acute minor tenth (~243/100) in five.
Subgroup: 2.3.5.7
Comma list: 16875/16807, 1600000/1594323
Mapping: [⟨1 8 19 20], ⟨0 -25 -65 -67]]
Wedgie: ⟨⟨ 25 65 67 45 36 -27 ]]
Optimal tuning (POTE): ~2 = 1\1, ~11907/10000 = 307.941
Optimal ET sequence: 39d, 74cd, 113, 152, 265, 417, 986d
Badness: 0.144551
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 1600000/1594323
Mapping: [⟨1 8 19 20 5], ⟨0 -25 -65 -67 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906
Optimal ET sequence: 39d, 74cd, 113, 152, 417, 569de, 721de
Badness: 0.051740
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 729/728, 1375/1372, 2205/2197
Mapping: [⟨1 8 19 20 5 25], ⟨0 -25 -65 -67 -6 -83]]
Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913
Optimal ET sequence: 39df, 74cdf, 113, 152f, 265, 417f
Badness: 0.038473