Jubilismic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cmloegcmluin (talk | contribs)
"optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence
Update keys and +descriptions for lemba and astrology
Line 8: Line 8:
[[Comma list]]: 50/49
[[Comma list]]: 50/49


[[Sval]] [[mapping]]: [{{val| 2 0 1 }}, {{val| 0 1 1 }}]
{{Mapping|legend=2| 2 0 1 | 0 1 1 }}


Sval mapping generators: ~7/5, ~5
: sval mapping generators: ~7/5, ~5


[[Gencom]] [[mapping]]: [{{val| 2 0 0 1 }}, {{val| 0 0 1 1 }}]
[[Gencom]] [[mapping]]: [{{val| 2 0 0 1 }}, {{val| 0 0 1 1 }}]
Line 36: Line 36:
== Lemba ==
== Lemba ==
{{Main| Lemba }}
{{Main| Lemba }}
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 41: Line 43:
[[Comma list]]: 50/49, 525/512
[[Comma list]]: 50/49, 525/512


[[Mapping]]: [{{val| 2 2 5 6 }}, {{val| 0 3 -1 -1 }}]
{{Mapping|legend=1| 2 2 5 6 | 0 3 -1 -1 }}


Mapping generators: ~7/5, ~8/7
: mapping generators: ~7/5, ~8/7


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~8/7 = 232.089
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~8/7 = 232.089
Line 56: Line 58:
Comma list: 45/44, 50/49, 385/384
Comma list: 45/44, 50/49, 385/384


Mapping: [{{val| 2 2 5 6 5 }}, {{val| 0 3 -1 -1 5 }}]
Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974
Line 69: Line 71:
Comma list: 45/44, 50/49, 65/64, 78/77
Comma list: 45/44, 50/49, 65/64, 78/77


Mapping: [{{val| 2 2 5 6 5 7 }}, {{val| 0 3 -1 -1 5 1 }}]
Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966
Line 78: Line 80:


== Astrology ==
== Astrology ==
{{See also| Magic family }}
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 84: Line 86:
[[Comma list]]: 50/49, 3125/3072
[[Comma list]]: 50/49, 3125/3072


[[Mapping]]: [{{val| 2 0 4 5 }}, {{val| 0 5 1 1 }}]
{{Mapping|legend=1| 2 0 4 5 | 0 5 1 1 }}


Mapping geenerators: ~7/5, ~5/4
: mapping geenerators: ~7/5, ~5/4


{{Multival|legend=1| 10 2 2 -20 -25 -1 }}
{{Multival|legend=1| 10 2 2 -20 -25 -1 }}
Line 101: Line 103:
Comma list: 50/49, 121/120, 176/175
Comma list: 50/49, 121/120, 176/175


Mapping: [{{val| 2 0 4 5 5 }}, {{val| 0 5 1 1 3 }}]
Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530
Line 114: Line 116:
Comma list: 50/49, 65/64, 78/77, 121/120
Comma list: 50/49, 65/64, 78/77, 121/120


Mapping: [{{val| 2 0 4 5 5 8 }}, {{val| 0 5 1 1 3 -1 }}]
Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787
Line 130: Line 132:
Comma list: 50/49, 66/65, 105/104, 121/120
Comma list: 50/49, 66/65, 105/104, 121/120


Mapping: [{{val| 2 0 4 5 5 3 }}, {{val| 0 5 1 1 3 7 }}]
Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }}


POTE generator: ~5/4 = 379.837
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.837


{{Optimal ET sequence|legend=1| 16, 22f, 38 }}
{{Optimal ET sequence|legend=1| 16, 22f, 38 }}
Line 143: Line 145:
[[Comma list]]: 50/49, 875/864
[[Comma list]]: 50/49, 875/864


[[Mapping]]: [{{val| 2 1 3 4 }}, {{val| 0 4 3 3 }}]
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }}


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~6/5 = 325.719
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~6/5 = 325.719
Line 156: Line 158:
Comma list: 50/49, 99/98, 875/864
Comma list: 50/49, 99/98, 875/864


Mapping: [{{val| 2 1 3 4 8 }}, {{val| 0 4 3 3 -2 }}]
Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545
Line 169: Line 171:
Comma list: 50/49, 55/54, 176/175
Comma list: 50/49, 55/54, 176/175


Mapping: [{{val| 2 1 3 4 2 }}, {{val| 0 4 3 3 9 }}]
Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038
Line 182: Line 184:
Comma list: 50/49, 55/54, 65/63, 176/175
Comma list: 50/49, 55/54, 65/63, 176/175


Mapping: [{{val| 2 1 3 4 2 3 }}, {{val| 0 4 3 3 9 8 }}]
Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841
Line 195: Line 197:
Comma list: 45/44, 50/49, 875/864
Comma list: 45/44, 50/49, 875/864


Mapping: [{{val| 2 1 3 4 1 }}, {{val| 0 4 3 3 11 }}]
Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427
Line 208: Line 210:
Comma list: 45/44, 50/49, 78/77, 325/324
Comma list: 45/44, 50/49, 78/77, 325/324


Mapping: [{{val| 2 1 3 4 1 2 }}, {{val| 0 4 3 3 11 10 }}]
Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396
Line 223: Line 225:
[[Comma list]]: 50/49, 8505/8192
[[Comma list]]: 50/49, 8505/8192


[[Mapping]]: [{{val| 2 1 10 11 }}, {{val| 0 2 -5 -5 }}]
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }}


{{Multival|legend=1| 4 -10 -10 -25 -27 5 }}
{{Multival|legend=1| 4 -10 -10 -25 -27 5 }}
Line 238: Line 240:
Comma list: 45/44, 50/49, 1344/1331
Comma list: 45/44, 50/49, 1344/1331


Mapping: [{{val| 2 1 10 11 8 }}, {{val| 0 2 -5 -5 -1 }}]
Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882
Line 251: Line 253:
Comma list: 45/44, 50/49, 78/77, 1053/1024
Comma list: 45/44, 50/49, 78/77, 1053/1024


Mapping: [{{val| 2 1 10 11 8 16 }}, {{val| 0 2 -5 -5 -1 -8 }}]
Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892
Line 266: Line 268:
[[Comma list]]: 50/49, 4375/4374
[[Comma list]]: 50/49, 4375/4374


[[Mapping]]: [{{val| 2 2 3 4 }}, {{val| 0 5 7 7 }}]
{{Mapping|legend=1| 2 2 3 4 | 0 5 7 7 }}


{{Multival|legend=1|10 14 14 -1 -6 -7}}
{{Multival|legend=1| 10 14 14 -1 -6 -7 }}


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~27/25 = 140.349
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~27/25 = 140.349
Line 281: Line 283:
Comma list: 50/49, 99/98, 864/847
Comma list: 50/49, 99/98, 864/847


Mapping: [{{val| 2 2 3 4 6 }}, {{val| 0 5 7 7 4 }}]
Mapping: {{mapping| 2 2 3 4 6 | 0 5 7 7 4 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587
Line 294: Line 296:
Comma list: 50/49, 78/77, 99/98, 144/143
Comma list: 50/49, 78/77, 99/98, 144/143


Mapping: [{{val| 2 2 3 4 6 6 }}, {{val| 0 5 7 7 4 6 }}]
Mapping: {{mapping| 2 2 3 4 6 6 | 0 5 7 7 4 6 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554
Line 309: Line 311:
[[Comma list]]: 50/49, 2240/2187
[[Comma list]]: 50/49, 2240/2187


[[Mapping]]: [{{val| 2 1 -3 -2 }}, {{val| 0 2 7 7 }}]
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }}


{{Multival|legend=1| 4 14 14 13 11 -7 }}
{{Multival|legend=1| 4 14 14 13 11 -7 }}
Line 324: Line 326:
Comma list: 50/49, 99/98, 2662/2625
Comma list: 50/49, 99/98, 2662/2625


Mapping: [{{val| 2 1 -3 -2 -4 }}, {{val| 0 2 7 7 10 }}]
Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184
Line 337: Line 339:
Comma list: 50/49, 65/63, 99/98, 968/945
Comma list: 50/49, 65/63, 99/98, 968/945


Mapping: [{{val| 2 1 -3 -2 -4 3 }}, {{val| 0 2 7 7 10 4 }}]
Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435
Line 352: Line 354:
[[Comma list]]: 50/49, 20480/19683
[[Comma list]]: 50/49, 20480/19683


[[Mapping]]: [{{val| 2 0 -24 -23 }}, {{val| 0 1 9 9 }}]
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }}


{{Multival|legend=1| 2 18 18 24 23 -9 }}
{{Multival|legend=1| 2 18 18 24 23 -9 }}
Line 367: Line 369:
Comma list: 50/49, 121/120, 896/891
Comma list: 50/49, 121/120, 896/891


Mapping: [{{val| 2 0 -24 -23 -9 }}, {{val| 0 1 9 9 5 }}]
Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310
Line 380: Line 382:
[[Comma list]]: 50/49, 546875/524288
[[Comma list]]: 50/49, 546875/524288


[[Mapping]]: [{{val| 16 0 37 45 }}, {{val| 0 1 0 0 }}]
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }}


{{Multival|legend=1| 16 0 0 -37 -45 0 }}
{{Multival|legend=1| 16 0 0 -37 -45 0 }}
Line 395: Line 397:
Comma list: 50/49, 385/384, 1331/1323
Comma list: 50/49, 385/384, 1331/1323


Mapping: [{{val| 16 0 37 45 30 }}, {{val| 0 1 0 0 1 }}]
Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }}


Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331
Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331
Line 410: Line 412:
[[Comma list]]: 36/35, 50/49, 64/63
[[Comma list]]: 36/35, 50/49, 64/63


[[Mapping]]: [{{val| 12 19 28 34 0 }}, {{val| 0 0 0 0 1 }}]
{{Mapping|legend=1| 12 19 28 34 0 | 0 0 0 0 1 }}


[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023
Line 423: Line 425:
[[Comma list]]: 50/49, 64/63, 245/243
[[Comma list]]: 50/49, 64/63, 245/243


[[Mapping]]: [{{val| 22 35 51 62 0 }}, {{val| 0 0 0 0 1 }}]
{{Mapping|legend=1| 22 35 51 62 0 | 0 0 0 0 1 }}


[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\22, ~11/8 = 557.563
[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\22, ~11/8 = 557.563
Line 436: Line 438:
[[Comma list]]: 50/49, 55/54, 64/63, 99/98
[[Comma list]]: 50/49, 55/54, 64/63, 99/98


[[Mapping]]: [{{val| 22 35 51 62 76 0 }}, {{val| 0 0 0 0 0 1 }}]
{{Mapping|legend=1| 22 35 51 62 76 0 | 0 0 0 0 0 1 }}


[[Optimal tuning]] ([[POTE]]): ~33/32 = 1\22, ~13/8 = 844.624
[[Optimal tuning]] ([[POTE]]): ~33/32 = 1\22, ~13/8 = 844.624

Revision as of 06:47, 3 June 2023

The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two.

Jubilic

The head of this clan, jubilic, is generated by ~5/4. That and a semioctave gives ~7/4.

Subgroup: 2.5.7

Comma list: 50/49

Sval mapping[2 0 1], 0 1 1]]

sval mapping generators: ~7/5, ~5

Gencom mapping: [2 0 0 1], 0 0 1 1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.840

Optimal ET sequence2, 4, 6, 16, 22, 60d, 82d, 104dd

Overview to extensions

Lemba finds the perfect fifth three steps away by tempering out 1029/1024. Astrology, five steps away by tempering out 3125/3072. Decimal, two steps away by tempering out 25/24 and 49/48. Diminished splits the ~7/5 period into a further two. Pajara slices the ~7/4 into two. Injera slices the ~5/1 into four. Hedgehog slices the ~7/1 into five.

Lemba, astrology, and doublewide are discussed below; others in the clan are

which are discussed elsewhere.

Lemba

Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth.

Subgroup: 2.3.5.7

Comma list: 50/49, 525/512

Mapping[2 2 5 6], 0 3 -1 -1]]

mapping generators: ~7/5, ~8/7

Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 232.089

Optimal ET sequence10, 16, 26, 62c

Badness: 0.062208

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 385/384

Mapping: [2 2 5 6 5], 0 3 -1 -1 5]]

Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974

Optimal ET sequence10, 16, 26

Badness: 0.041563

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 65/64, 78/77

Mapping: [2 2 5 6 5 7], 0 3 -1 -1 5 1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966

Optimal ET sequence10, 16, 26

Badness: 0.025477

Astrology

Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3.

Subgroup: 2.3.5.7

Comma list: 50/49, 3125/3072

Mapping[2 0 4 5], 0 5 1 1]]

mapping geenerators: ~7/5, ~5/4

Wedgie⟨⟨ 10 2 2 -20 -25 -1 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.578

Optimal ET sequence6, 16, 22, 60d, 82d

Badness: 0.082673

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 176/175

Mapping: [2 0 4 5 5], 0 5 1 1 3]]

Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530

Optimal ET sequence6, 16, 22, 60de, 82de

Badness: 0.039151

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/64, 78/77, 121/120

Mapping: [2 0 4 5 5 8], 0 5 1 1 3 -1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787

Optimal ET sequence6, 16, 22, 38f

Badness: 0.034376

Music

Horoscope

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 66/65, 105/104, 121/120

Mapping: [2 0 4 5 5 3], 0 5 1 1 3 7]]

Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.837

Optimal ET sequence16, 22f, 38

Badness: 0.035284

Doublewide

Subgroup: 2.3.5.7

Comma list: 50/49, 875/864

Mapping[2 1 3 4], 0 4 3 3]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.719

Optimal ET sequence4, 14bd, 18, 22, 48, 70c

Badness: 0.043462

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 875/864

Mapping: [2 1 3 4 8], 0 4 3 3 -2]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545

Optimal ET sequence4, 14bd, 18, 22, 48, 70c, 118cd

Badness: 0.032058

Fleetwood

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 176/175

Mapping: [2 1 3 4 2], 0 4 3 3 9]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038

Optimal ET sequence4e, 18e, 22

Badness: 0.035202

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 176/175

Mapping: [2 1 3 4 2 3], 0 4 3 3 9 8]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841

Optimal ET sequence4ef, 18e, 22, 84bddf

Badness: 0.031835

Cavalier

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 875/864

Mapping: [2 1 3 4 1], 0 4 3 3 11]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427

Optimal ET sequence22e, 26

Badness: 0.052899

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 325/324

Mapping: [2 1 3 4 1 2], 0 4 3 3 11 10]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396

Optimal ET sequence22ef, 26

Badness: 0.035040

Elvis

For the 5-limit version of this temperament, see High badness temperaments #Elvis.

Subgroup: 2.3.5.7

Comma list: 50/49, 8505/8192

Mapping[2 1 10 11], 0 2 -5 -5]]

Wedgie⟨⟨ 4 -10 -10 -25 -27 5 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~45/32 = 553.721

Optimal ET sequence2, 24c, 26

Badness: 0.141473

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 1344/1331

Mapping: [2 1 10 11 8], 0 2 -5 -5 -1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882

Optimal ET sequence2, 24c, 26

Badness: 0.063212

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 1053/1024

Mapping: [2 1 10 11 8 16], 0 2 -5 -5 -1 -8]]

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892

Optimal ET sequence2f, 24cf, 26

Badness: 0.043997

Crepuscular

Subgroup: 2.3.5.7

Comma list: 50/49, 4375/4374

Mapping[2 2 3 4], 0 5 7 7]]

Wedgie⟨⟨ 10 14 14 -1 -6 -7 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~27/25 = 140.349

Optimal ET sequence8d, 26, 34d, 60d

Badness: 0.086669

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 864/847

Mapping: [2 2 3 4 6], 0 5 7 7 4]]

Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587

Optimal ET sequence8d, 26, 34d, 60d

Badness: 0.040758

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 78/77, 99/98, 144/143

Mapping: [2 2 3 4 6 6], 0 5 7 7 4 6]]

Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554

Optimal ET sequence8d, 26, 34d, 60d

Badness: 0.024368

Comic

For the 5-limit version of this temperament, see High badness temperaments #Comic.

Subgroup: 2.3.5.7

Comma list: 50/49, 2240/2187

Mapping[2 1 -3 -2], 0 2 7 7]]

Wedgie⟨⟨ 4 14 14 13 11 -7 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.699

Optimal ET sequence20cd, 22

Badness: 0.084395

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 2662/2625

Mapping: [2 1 -3 -2 -4], 0 2 7 7 10]]

Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184

Optimal ET sequence20cde, 22

Badness: 0.045052

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/63, 99/98, 968/945

Mapping: [2 1 -3 -2 -4 3], 0 2 7 7 10 4]]

Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435

Optimal ET sequence22

Badness: 0.041470

Bipyth

Subgroup: 2.3.5.7

Comma list: 50/49, 20480/19683

Mapping[2 0 -24 -23], 0 1 9 9]]

Wedgie⟨⟨ 2 18 18 24 23 -9 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.437

Optimal ET sequence10cd, 12cd, 22

Badness: 0.165033

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 896/891

Mapping: [2 0 -24 -23 -9], 0 1 9 9 5]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310

Optimal ET sequence10cd, 12cde, 22

Badness: 0.070910

Sedecic

Subgroup: 2.3.5.7

Comma list: 50/49, 546875/524288

Mapping[16 0 37 45], 0 1 0 0]]

Wedgie⟨⟨ 16 0 0 -37 -45 0 ]]

Optimal tuning (POTE): ~128/125 = 1\16, ~3/2 = 700.554

Optimal ET sequence16, 32, 48

Badness: 0.265972

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 385/384, 1331/1323

Mapping: [16 0 37 45 30], 0 1 0 0 1]]

Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331

Optimal ET sequence16, 32, 48

Badness: 0.092774

Duodecim

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 64/63

Mapping[12 19 28 34 0], 0 0 0 0 1]]

Optimal tuning (POTE): ~16/15 = 1\12, ~11/8 = 565.023

Optimal ET sequence12, 24d, 36d

Badness: 0.030536

Vigintiduo

Subgroup: 2.3.5.7.11

Comma list: 50/49, 64/63, 245/243

Mapping[22 35 51 62 0], 0 0 0 0 1]]

Optimal tuning (POTE): ~36/35 = 1\22, ~11/8 = 557.563

Optimal ET sequence22, 66de, 88bde, 110bd, 198bcdde

Badness: 0.048372

Vigin

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 64/63, 99/98

Mapping[22 35 51 62 76 0], 0 0 0 0 0 1]]

Optimal tuning (POTE): ~33/32 = 1\22, ~13/8 = 844.624

Optimal ET sequence22, 44

Badness: 0.029849