Jubilismic clan: Difference between revisions
Cmloegcmluin (talk | contribs) "optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence |
Update keys and +descriptions for lemba and astrology |
||
Line 8: | Line 8: | ||
[[Comma list]]: 50/49 | [[Comma list]]: 50/49 | ||
{{Mapping|legend=2| 2 0 1 | 0 1 1 }} | |||
: sval mapping generators: ~7/5, ~5 | |||
[[Gencom]] [[mapping]]: [{{val| 2 0 0 1 }}, {{val| 0 0 1 1 }}] | [[Gencom]] [[mapping]]: [{{val| 2 0 0 1 }}, {{val| 0 0 1 1 }}] | ||
Line 36: | Line 36: | ||
== Lemba == | == Lemba == | ||
{{Main| Lemba }} | {{Main| Lemba }} | ||
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 41: | Line 43: | ||
[[Comma list]]: 50/49, 525/512 | [[Comma list]]: 50/49, 525/512 | ||
{{Mapping|legend=1| 2 2 5 6 | 0 3 -1 -1 }} | |||
: mapping generators: ~7/5, ~8/7 | |||
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~8/7 = 232.089 | [[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~8/7 = 232.089 | ||
Line 56: | Line 58: | ||
Comma list: 45/44, 50/49, 385/384 | Comma list: 45/44, 50/49, 385/384 | ||
Mapping: | Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974 | Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974 | ||
Line 69: | Line 71: | ||
Comma list: 45/44, 50/49, 65/64, 78/77 | Comma list: 45/44, 50/49, 65/64, 78/77 | ||
Mapping: | Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966 | Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966 | ||
Line 78: | Line 80: | ||
== Astrology == | == Astrology == | ||
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 84: | Line 86: | ||
[[Comma list]]: 50/49, 3125/3072 | [[Comma list]]: 50/49, 3125/3072 | ||
{{Mapping|legend=1| 2 0 4 5 | 0 5 1 1 }} | |||
: mapping geenerators: ~7/5, ~5/4 | |||
{{Multival|legend=1| 10 2 2 -20 -25 -1 }} | {{Multival|legend=1| 10 2 2 -20 -25 -1 }} | ||
Line 101: | Line 103: | ||
Comma list: 50/49, 121/120, 176/175 | Comma list: 50/49, 121/120, 176/175 | ||
Mapping: | Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530 | Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530 | ||
Line 114: | Line 116: | ||
Comma list: 50/49, 65/64, 78/77, 121/120 | Comma list: 50/49, 65/64, 78/77, 121/120 | ||
Mapping: | Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787 | Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787 | ||
Line 130: | Line 132: | ||
Comma list: 50/49, 66/65, 105/104, 121/120 | Comma list: 50/49, 66/65, 105/104, 121/120 | ||
Mapping: | Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }} | ||
POTE | Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.837 | ||
{{Optimal ET sequence|legend=1| 16, 22f, 38 }} | {{Optimal ET sequence|legend=1| 16, 22f, 38 }} | ||
Line 143: | Line 145: | ||
[[Comma list]]: 50/49, 875/864 | [[Comma list]]: 50/49, 875/864 | ||
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }} | |||
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~6/5 = 325.719 | [[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~6/5 = 325.719 | ||
Line 156: | Line 158: | ||
Comma list: 50/49, 99/98, 875/864 | Comma list: 50/49, 99/98, 875/864 | ||
Mapping: | Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545 | Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545 | ||
Line 169: | Line 171: | ||
Comma list: 50/49, 55/54, 176/175 | Comma list: 50/49, 55/54, 176/175 | ||
Mapping: | Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038 | Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038 | ||
Line 182: | Line 184: | ||
Comma list: 50/49, 55/54, 65/63, 176/175 | Comma list: 50/49, 55/54, 65/63, 176/175 | ||
Mapping: | Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841 | Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841 | ||
Line 195: | Line 197: | ||
Comma list: 45/44, 50/49, 875/864 | Comma list: 45/44, 50/49, 875/864 | ||
Mapping: | Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427 | Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427 | ||
Line 208: | Line 210: | ||
Comma list: 45/44, 50/49, 78/77, 325/324 | Comma list: 45/44, 50/49, 78/77, 325/324 | ||
Mapping: | Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396 | Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396 | ||
Line 223: | Line 225: | ||
[[Comma list]]: 50/49, 8505/8192 | [[Comma list]]: 50/49, 8505/8192 | ||
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }} | |||
{{Multival|legend=1| 4 -10 -10 -25 -27 5 }} | {{Multival|legend=1| 4 -10 -10 -25 -27 5 }} | ||
Line 238: | Line 240: | ||
Comma list: 45/44, 50/49, 1344/1331 | Comma list: 45/44, 50/49, 1344/1331 | ||
Mapping: | Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882 | Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882 | ||
Line 251: | Line 253: | ||
Comma list: 45/44, 50/49, 78/77, 1053/1024 | Comma list: 45/44, 50/49, 78/77, 1053/1024 | ||
Mapping: | Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892 | Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892 | ||
Line 266: | Line 268: | ||
[[Comma list]]: 50/49, 4375/4374 | [[Comma list]]: 50/49, 4375/4374 | ||
{{Mapping|legend=1| 2 2 3 4 | 0 5 7 7 }} | |||
{{Multival|legend=1|10 14 14 -1 -6 -7}} | {{Multival|legend=1| 10 14 14 -1 -6 -7 }} | ||
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~27/25 = 140.349 | [[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~27/25 = 140.349 | ||
Line 281: | Line 283: | ||
Comma list: 50/49, 99/98, 864/847 | Comma list: 50/49, 99/98, 864/847 | ||
Mapping: | Mapping: {{mapping| 2 2 3 4 6 | 0 5 7 7 4 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587 | Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587 | ||
Line 294: | Line 296: | ||
Comma list: 50/49, 78/77, 99/98, 144/143 | Comma list: 50/49, 78/77, 99/98, 144/143 | ||
Mapping: | Mapping: {{mapping| 2 2 3 4 6 6 | 0 5 7 7 4 6 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554 | Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554 | ||
Line 309: | Line 311: | ||
[[Comma list]]: 50/49, 2240/2187 | [[Comma list]]: 50/49, 2240/2187 | ||
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }} | |||
{{Multival|legend=1| 4 14 14 13 11 -7 }} | {{Multival|legend=1| 4 14 14 13 11 -7 }} | ||
Line 324: | Line 326: | ||
Comma list: 50/49, 99/98, 2662/2625 | Comma list: 50/49, 99/98, 2662/2625 | ||
Mapping: | Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184 | Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184 | ||
Line 337: | Line 339: | ||
Comma list: 50/49, 65/63, 99/98, 968/945 | Comma list: 50/49, 65/63, 99/98, 968/945 | ||
Mapping: | Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435 | Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435 | ||
Line 352: | Line 354: | ||
[[Comma list]]: 50/49, 20480/19683 | [[Comma list]]: 50/49, 20480/19683 | ||
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }} | |||
{{Multival|legend=1| 2 18 18 24 23 -9 }} | {{Multival|legend=1| 2 18 18 24 23 -9 }} | ||
Line 367: | Line 369: | ||
Comma list: 50/49, 121/120, 896/891 | Comma list: 50/49, 121/120, 896/891 | ||
Mapping: | Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }} | ||
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310 | Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310 | ||
Line 380: | Line 382: | ||
[[Comma list]]: 50/49, 546875/524288 | [[Comma list]]: 50/49, 546875/524288 | ||
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }} | |||
{{Multival|legend=1| 16 0 0 -37 -45 0 }} | {{Multival|legend=1| 16 0 0 -37 -45 0 }} | ||
Line 395: | Line 397: | ||
Comma list: 50/49, 385/384, 1331/1323 | Comma list: 50/49, 385/384, 1331/1323 | ||
Mapping: | Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }} | ||
Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331 | Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331 | ||
Line 410: | Line 412: | ||
[[Comma list]]: 36/35, 50/49, 64/63 | [[Comma list]]: 36/35, 50/49, 64/63 | ||
{{Mapping|legend=1| 12 19 28 34 0 | 0 0 0 0 1 }} | |||
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023 | [[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023 | ||
Line 423: | Line 425: | ||
[[Comma list]]: 50/49, 64/63, 245/243 | [[Comma list]]: 50/49, 64/63, 245/243 | ||
{{Mapping|legend=1| 22 35 51 62 0 | 0 0 0 0 1 }} | |||
[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\22, ~11/8 = 557.563 | [[Optimal tuning]] ([[POTE]]): ~36/35 = 1\22, ~11/8 = 557.563 | ||
Line 436: | Line 438: | ||
[[Comma list]]: 50/49, 55/54, 64/63, 99/98 | [[Comma list]]: 50/49, 55/54, 64/63, 99/98 | ||
{{Mapping|legend=1| 22 35 51 62 76 0 | 0 0 0 0 0 1 }} | |||
[[Optimal tuning]] ([[POTE]]): ~33/32 = 1\22, ~13/8 = 844.624 | [[Optimal tuning]] ([[POTE]]): ~33/32 = 1\22, ~13/8 = 844.624 |
Revision as of 06:47, 3 June 2023
The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two.
Jubilic
The head of this clan, jubilic, is generated by ~5/4. That and a semioctave gives ~7/4.
Subgroup: 2.5.7
Comma list: 50/49
Sval mapping: [⟨2 0 1], ⟨0 1 1]]
- sval mapping generators: ~7/5, ~5
Gencom mapping: [⟨2 0 0 1], ⟨0 0 1 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.840
Optimal ET sequence: 2, 4, 6, 16, 22, 60d, 82d, 104dd
Overview to extensions
Lemba finds the perfect fifth three steps away by tempering out 1029/1024. Astrology, five steps away by tempering out 3125/3072. Decimal, two steps away by tempering out 25/24 and 49/48. Diminished splits the ~7/5 period into a further two. Pajara slices the ~7/4 into two. Injera slices the ~5/1 into four. Hedgehog slices the ~7/1 into five.
Lemba, astrology, and doublewide are discussed below; others in the clan are
- Diminished → Dimipent family
- Pajara → Diaschismic family
- Decimal → Dicot family
- Injera → Meantone family
- Octokaidecal → Trienstonic clan
- Hedgehog → Porcupine family
- Bipelog → Pelogic family
- Dubbla → Wesley family
- Hexe → Augmented family
which are discussed elsewhere.
Lemba
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth.
Subgroup: 2.3.5.7
Comma list: 50/49, 525/512
Mapping: [⟨2 2 5 6], ⟨0 3 -1 -1]]
- mapping generators: ~7/5, ~8/7
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 232.089
Optimal ET sequence: 10, 16, 26, 62c
Badness: 0.062208
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 385/384
Mapping: [⟨2 2 5 6 5], ⟨0 3 -1 -1 5]]
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974
Optimal ET sequence: 10, 16, 26
Badness: 0.041563
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 65/64, 78/77
Mapping: [⟨2 2 5 6 5 7], ⟨0 3 -1 -1 5 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966
Optimal ET sequence: 10, 16, 26
Badness: 0.025477
Astrology
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3.
Subgroup: 2.3.5.7
Comma list: 50/49, 3125/3072
Mapping: [⟨2 0 4 5], ⟨0 5 1 1]]
- mapping geenerators: ~7/5, ~5/4
Wedgie: ⟨⟨ 10 2 2 -20 -25 -1 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.578
Optimal ET sequence: 6, 16, 22, 60d, 82d
Badness: 0.082673
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 121/120, 176/175
Mapping: [⟨2 0 4 5 5], ⟨0 5 1 1 3]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530
Optimal ET sequence: 6, 16, 22, 60de, 82de
Badness: 0.039151
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 65/64, 78/77, 121/120
Mapping: [⟨2 0 4 5 5 8], ⟨0 5 1 1 3 -1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787
Optimal ET sequence: 6, 16, 22, 38f
Badness: 0.034376
- Music
Horoscope
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 66/65, 105/104, 121/120
Mapping: [⟨2 0 4 5 5 3], ⟨0 5 1 1 3 7]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.837
Optimal ET sequence: 16, 22f, 38
Badness: 0.035284
Doublewide
Subgroup: 2.3.5.7
Comma list: 50/49, 875/864
Mapping: [⟨2 1 3 4], ⟨0 4 3 3]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.719
Optimal ET sequence: 4, 14bd, 18, 22, 48, 70c
Badness: 0.043462
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 875/864
Mapping: [⟨2 1 3 4 8], ⟨0 4 3 3 -2]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545
Optimal ET sequence: 4, 14bd, 18, 22, 48, 70c, 118cd
Badness: 0.032058
Fleetwood
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 176/175
Mapping: [⟨2 1 3 4 2], ⟨0 4 3 3 9]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038
Optimal ET sequence: 4e, 18e, 22
Badness: 0.035202
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 176/175
Mapping: [⟨2 1 3 4 2 3], ⟨0 4 3 3 9 8]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841
Optimal ET sequence: 4ef, 18e, 22, 84bddf
Badness: 0.031835
Cavalier
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 875/864
Mapping: [⟨2 1 3 4 1], ⟨0 4 3 3 11]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427
Badness: 0.052899
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 78/77, 325/324
Mapping: [⟨2 1 3 4 1 2], ⟨0 4 3 3 11 10]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396
Badness: 0.035040
Elvis
- For the 5-limit version of this temperament, see High badness temperaments #Elvis.
Subgroup: 2.3.5.7
Comma list: 50/49, 8505/8192
Mapping: [⟨2 1 10 11], ⟨0 2 -5 -5]]
Wedgie: ⟨⟨ 4 -10 -10 -25 -27 5 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~45/32 = 553.721
Optimal ET sequence: 2, 24c, 26
Badness: 0.141473
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 1344/1331
Mapping: [⟨2 1 10 11 8], ⟨0 2 -5 -5 -1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882
Optimal ET sequence: 2, 24c, 26
Badness: 0.063212
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 78/77, 1053/1024
Mapping: [⟨2 1 10 11 8 16], ⟨0 2 -5 -5 -1 -8]]
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892
Optimal ET sequence: 2f, 24cf, 26
Badness: 0.043997
Crepuscular
Subgroup: 2.3.5.7
Comma list: 50/49, 4375/4374
Mapping: [⟨2 2 3 4], ⟨0 5 7 7]]
Wedgie: ⟨⟨ 10 14 14 -1 -6 -7 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~27/25 = 140.349
Optimal ET sequence: 8d, 26, 34d, 60d
Badness: 0.086669
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 864/847
Mapping: [⟨2 2 3 4 6], ⟨0 5 7 7 4]]
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587
Optimal ET sequence: 8d, 26, 34d, 60d
Badness: 0.040758
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 78/77, 99/98, 144/143
Mapping: [⟨2 2 3 4 6 6], ⟨0 5 7 7 4 6]]
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554
Optimal ET sequence: 8d, 26, 34d, 60d
Badness: 0.024368
Comic
- For the 5-limit version of this temperament, see High badness temperaments #Comic.
Subgroup: 2.3.5.7
Comma list: 50/49, 2240/2187
Mapping: [⟨2 1 -3 -2], ⟨0 2 7 7]]
Wedgie: ⟨⟨ 4 14 14 13 11 -7 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.699
Badness: 0.084395
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 2662/2625
Mapping: [⟨2 1 -3 -2 -4], ⟨0 2 7 7 10]]
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184
Optimal ET sequence: 20cde, 22
Badness: 0.045052
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 65/63, 99/98, 968/945
Mapping: [⟨2 1 -3 -2 -4 3], ⟨0 2 7 7 10 4]]
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435
Badness: 0.041470
Bipyth
Subgroup: 2.3.5.7
Comma list: 50/49, 20480/19683
Mapping: [⟨2 0 -24 -23], ⟨0 1 9 9]]
Wedgie: ⟨⟨ 2 18 18 24 23 -9 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.437
Optimal ET sequence: 10cd, 12cd, 22
Badness: 0.165033
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 121/120, 896/891
Mapping: [⟨2 0 -24 -23 -9], ⟨0 1 9 9 5]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310
Optimal ET sequence: 10cd, 12cde, 22
Badness: 0.070910
Sedecic
Subgroup: 2.3.5.7
Comma list: 50/49, 546875/524288
Mapping: [⟨16 0 37 45], ⟨0 1 0 0]]
Wedgie: ⟨⟨ 16 0 0 -37 -45 0 ]]
Optimal tuning (POTE): ~128/125 = 1\16, ~3/2 = 700.554
Optimal ET sequence: 16, 32, 48
Badness: 0.265972
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 385/384, 1331/1323
Mapping: [⟨16 0 37 45 30], ⟨0 1 0 0 1]]
Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331
Optimal ET sequence: 16, 32, 48
Badness: 0.092774
Duodecim
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 64/63
Mapping: [⟨12 19 28 34 0], ⟨0 0 0 0 1]]
Optimal tuning (POTE): ~16/15 = 1\12, ~11/8 = 565.023
Optimal ET sequence: 12, 24d, 36d
Badness: 0.030536
Vigintiduo
Subgroup: 2.3.5.7.11
Comma list: 50/49, 64/63, 245/243
Mapping: [⟨22 35 51 62 0], ⟨0 0 0 0 1]]
Optimal tuning (POTE): ~36/35 = 1\22, ~11/8 = 557.563
Optimal ET sequence: 22, 66de, 88bde, 110bd, 198bcdde
Badness: 0.048372
Vigin
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 64/63, 99/98
Mapping: [⟨22 35 51 62 76 0], ⟨0 0 0 0 0 1]]
Optimal tuning (POTE): ~33/32 = 1\22, ~13/8 = 844.624
Badness: 0.029849