Table of 198edo intervals: Difference between revisions
Jump to navigation
Jump to search
7-limit is done |
11-limit is done |
||
Line 2: | Line 2: | ||
This article is a work in progress. | This article is a work in progress. | ||
11-limit is done. | |||
</div> | </div> | ||
This '''table of [[198edo]] intervals''' assumes 13-limit [[patent val]] {{val|198 314 460 556 685 733}}. | This '''table of [[198edo]] intervals''' assumes 13-limit [[patent val]] {{val|198 314 460 556 685 733}}. | ||
Intervals highlighted in '''bold''' are prime harmonics or subharmonics | Intervals highlighted in '''bold''' are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. 7-limit intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in ''italic'', for they are consistent under the criterion of 99edo. Intervals otherwise that differ by more than 50%, with odd limit over 729, or with two more simpler mapped to the same degree, are not shown. | ||
{| class="wikitable center-1 right-2" | {| class="wikitable center-1 right-2" | ||
Line 26: | Line 26: | ||
| | | | ||
| | | | ||
| [[385/384]], [[441/440 | | [[385/384]], [[441/440]] | ||
| [[196/195]], [[325/324 | | [[196/195]], [[325/324]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 12.{{overline|12}} | | 12.{{overline|12}} | ||
| ? | | ? | ||
| [[126/125]], [[ | | [[126/125]], [[225/224|''225/224'']] | ||
| [[121/120]] | | [[121/120]] | ||
| [[144/143]], [[169/168]] | | [[144/143]], [[169/168]] | ||
Line 59: | Line 59: | ||
| 6 | | 6 | ||
| 36.{{overline|36}} | | 36.{{overline|36}} | ||
| | | [[128/125|''128/125'']] | ||
| [[49/48]], [[50/49]] | | [[49/48]], [[50/49]] | ||
| ? | | ? | ||
Line 68: | Line 68: | ||
| | | | ||
| | | | ||
| | | 352/343 | ||
| [[40/39]] | | [[40/39]] | ||
|- | |- | ||
Line 82: | Line 82: | ||
| | | | ||
| | | | ||
| [[33/32]] | | [[33/32]], 567/550 | ||
| [[65/63]] | | [[65/63]] | ||
|- | |- | ||
Line 89: | Line 89: | ||
| [[648/625]] | | [[648/625]] | ||
| [[28/27]] | | [[28/27]] | ||
| | | 363/350 | ||
| ? | | ? | ||
|- | |- | ||
Line 96: | Line 96: | ||
| | | | ||
| | | | ||
| [[80/77]] | | [[80/77]], 343/330 | ||
| [[26/25]], [[27/26]] | | [[26/25]], [[27/26]] | ||
|- | |- | ||
Line 115: | Line 115: | ||
| 14 | | 14 | ||
| 84.{{overline|84}} | | 84.{{overline|84}} | ||
| | | [[256/243|''256/243'']] | ||
| [[21/20]], 360/343 | | [[21/20]], 360/343 | ||
| 605/576 | | 605/576 | ||
Line 124: | Line 124: | ||
| | | | ||
| | | | ||
| 539/512 | | 539/512, 625/594 | ||
| 96/91 | | 96/91 | ||
|- | |- | ||
| 16 | | 16 | ||
| 96.{{overline|96}} | | 96.{{overline|96}} | ||
| | | [[135/128|''135/128'']] | ||
| 200/189, 343/324 | | 200/189, 343/324 | ||
| [[128/121]] | | [[128/121]], 363/343 | ||
| ? | | ? | ||
|- | |- | ||
Line 152: | Line 152: | ||
| | | | ||
| | | | ||
| 77/72 | | 77/72, 294/275 | ||
| ? | | ? | ||
|- | |- | ||
Line 166: | Line 166: | ||
| | | | ||
| | | | ||
| 320/297 | | 264/245, 320/297 | ||
| [[14/13]] | | [[14/13]] | ||
|- | |- | ||
Line 173: | Line 173: | ||
| [[27/25]] | | [[27/25]] | ||
| 175/162 | | 175/162 | ||
| 121/112 | | 121/112, 392/363 | ||
| ? | | ? | ||
|- | |- | ||
Line 180: | Line 180: | ||
| | | | ||
| | | | ||
| 693/640 | | 250/231, 693/640 | ||
| [[13/12]] | | [[13/12]] | ||
|- | |- | ||
| 24 | | 24 | ||
| 145.{{overline|45}} | | 145.{{overline|45}} | ||
| | | ''625/576'' | ||
| [[49/45]], 160/147 | | [[49/45]], 160/147 | ||
| ? | | ? | ||
Line 194: | Line 194: | ||
| | | | ||
| | | | ||
| [[12/11]] | | [[12/11]], 275/252 | ||
| ? | | ? | ||
|- | |- | ||
| 26 | | 26 | ||
| 157.{{overline|57}} | | 157.{{overline|57}} | ||
| | | ''800/729'' | ||
| [[35/32]], 192/175 | | [[35/32]], 192/175 | ||
| ? | | ? | ||
Line 215: | Line 215: | ||
| ? | | ? | ||
| [[54/49]], 441/400 | | [[54/49]], 441/400 | ||
| | | 400/363 | ||
| ? | | ? | ||
|- | |- | ||
Line 229: | Line 229: | ||
| [[10/9]] | | [[10/9]] | ||
| ? | | ? | ||
| | | 672/605 | ||
| ? | | ? | ||
|- | |- | ||
Line 236: | Line 236: | ||
| | | | ||
| | | | ||
| 49/44 | | 49/44, 600/539 | ||
| ? | | ? | ||
|- | |- | ||
Line 264: | Line 264: | ||
| | | | ||
| | | | ||
| 112/99, | | 112/99, 198/175 | ||
| ? | | ? | ||
|- | |- | ||
| 36 | | 36 | ||
| 218.{{overline|18}} | | 218.{{overline|18}} | ||
| | | ''256/225'' | ||
| 245/216, 500/441 | | 245/216, 500/441 | ||
| 363/320 | | 363/320, 686/605 | ||
| ? | | ? | ||
|- | |- | ||
Line 306: | Line 306: | ||
| | | | ||
| | | | ||
| | | 231/200, 343/297 | ||
| [[15/13]] | | [[15/13]] | ||
|- | |- | ||
Line 340: | Line 340: | ||
| 278.{{overline|78}} | | 278.{{overline|78}} | ||
| ? | | ? | ||
| 147/125 | | [[75/64|''75/64'']], 147/125 | ||
| ? | | ? | ||
| ? | | ? | ||
Line 353: | Line 353: | ||
| 48 | | 48 | ||
| 290.{{overline|90}} | | 290.{{overline|90}} | ||
| | | [[32/27|''32/27'']] | ||
| [[189/160]] | | [[189/160]] | ||
| 605/512 | | 605/512 | ||
Line 362: | Line 362: | ||
| | | | ||
| | | | ||
| | | 196/165, 297/250 | ||
| ? | | ? | ||
|- | |- | ||
Line 383: | Line 383: | ||
| [[6/5]] | | [[6/5]] | ||
| ? | | ? | ||
| | | 605/504 | ||
| ? | | ? | ||
|- | |- | ||
Line 396: | Line 396: | ||
| 327.{{overline|27}} | | 327.{{overline|27}} | ||
| ? | | ? | ||
| | | 98/81, ''135/112'' | ||
| | | 121/100 | ||
| ? | | ? | ||
|- | |- | ||
Line 404: | Line 404: | ||
| | | | ||
| | | | ||
| [[40/33]] | | [[40/33]], 297/245 | ||
| [[63/52]] | | [[63/52]] | ||
|- | |- | ||
Line 411: | Line 411: | ||
| 243/200 | | 243/200 | ||
| 175/144 | | 175/144 | ||
| | | 147/121 | ||
| ? | | ? | ||
|- | |- | ||
Line 418: | Line 418: | ||
| | | | ||
| | | | ||
| [[11/9]] | | [[11/9]], 336/275 | ||
| [[39/32]] | | [[39/32]] | ||
|- | |- | ||
| 58 | | 58 | ||
| 351.{{overline|51}} | | 351.{{overline|51}} | ||
| | | ''768/625'' | ||
| [[49/40]], [[60/49]] | | [[49/40]], [[60/49]] | ||
| ? | | ? | ||
Line 432: | Line 432: | ||
| | | | ||
| | | | ||
| [[27/22]] | | [[27/22]], 275/224 | ||
| '''[[16/13]]''' | | '''[[16/13]]''' | ||
|- | |- | ||
Line 439: | Line 439: | ||
| 100/81 | | 100/81 | ||
| 216/175 | | 216/175 | ||
| 448/363 | | 121/98, 448/363 | ||
| ? | | ? | ||
|- | |- | ||
Line 446: | Line 446: | ||
| | | | ||
| | | | ||
| 99/80 | | 99/80, 245/198 | ||
| [[26/21]] | | [[26/21]] | ||
|- | |- | ||
Line 452: | Line 452: | ||
| 375.{{overline|75}} | | 375.{{overline|75}} | ||
| ? | | ? | ||
| [[56/45]] | | [[56/45]], ''243/196'' | ||
| ? | | ? | ||
| ? | | ? | ||
Line 460: | Line 460: | ||
| | | | ||
| | | | ||
| 96/77, | | 96/77, 343/275 | ||
| ? | | ? | ||
|- | |- | ||
Line 467: | Line 467: | ||
| '''[[5/4]]''' | | '''[[5/4]]''' | ||
| ? | | ? | ||
| | | 756/605 | ||
| ? | | ? | ||
|- | |- | ||
Line 479: | Line 479: | ||
| 66 | | 66 | ||
| 400.00 | | 400.00 | ||
| | | ''512/405'' | ||
| [[63/50]], 432/343 | | [[63/50]], 432/343 | ||
| [[121/96]] | | [[121/96]] | ||
Line 488: | Line 488: | ||
| | | | ||
| | | | ||
| 486/385 | | 125/99, 486/385 | ||
| ? | | ? | ||
|- | |- | ||
| 68 | | 68 | ||
| 412.{{overline|12}} | | 412.{{overline|12}} | ||
| | | [[81/64|''81/64'']] | ||
| [[80/63]], 343/270 | | [[80/63]], 343/270 | ||
| 768/605 | | 768/605 | ||
Line 516: | Line 516: | ||
| | | | ||
| | | | ||
| 77/60 | | 77/60, 440/343 | ||
| ? | | ? | ||
|- | |- | ||
Line 537: | Line 537: | ||
| 162/125 | | 162/125 | ||
| [[35/27]] | | [[35/27]] | ||
| | | 363/280, 784/605 | ||
| ? | | ? | ||
|- | |- | ||
Line 544: | Line 544: | ||
| | | | ||
| | | | ||
| | | 100/77, 343/264 | ||
| [[13/10]] | | [[13/10]] | ||
|- | |- | ||
| 76 | | 76 | ||
| 460.{{overline|60}} | | 460.{{overline|60}} | ||
| | | ''125/96'' | ||
| [[64/49]], 98/75 | | [[64/49]], 98/75 | ||
| ? | | ? | ||
Line 586: | Line 586: | ||
| | | | ||
| | | | ||
| 297/224 | | 175/132, 297/224 | ||
| ? | | ? | ||
|- | |- | ||
Line 600: | Line 600: | ||
| | | | ||
| | | | ||
| 385/288 | | 147/110, 385/288 | ||
| ? | | ? | ||
|- | |- | ||
Line 606: | Line 606: | ||
| 509.{{overline|09}} | | 509.{{overline|09}} | ||
| ? | | ? | ||
| | | [[75/56|''75/56'']], 168/125 | ||
| ? | | ? | ||
| ? | | ? | ||
Line 621: | Line 621: | ||
| [[27/20]] | | [[27/20]] | ||
| ? | | ? | ||
| | | 490/343, 605/448 | ||
| ? | | ? | ||
|- | |- | ||
Line 633: | Line 633: | ||
| 88 | | 88 | ||
| 533.{{overline|33}} | | 533.{{overline|33}} | ||
| | | ''512/375'' | ||
| [[49/36]], 200/147 | | [[49/36]], 200/147 | ||
| ? | | ? | ||
Line 656: | Line 656: | ||
| | | | ||
| | | | ||
| '''[[11/8]]''' | | '''[[11/8]]''', 378/275 | ||
| ? | | ? | ||
|- | |- | ||
| 92 | | 92 | ||
| 557.{{overline|57}} | | 557.{{overline|57}} | ||
| | | ''864/625'' | ||
| 441/320 | | [[112/81|''112/81'']], 441/320 | ||
| ? | | ? | ||
| ? | | ? | ||
Line 670: | Line 670: | ||
| | | | ||
| | | | ||
| 320/231 | | 320/231, 686/495 | ||
| [[18/13]] | | [[18/13]] | ||
|- | |- | ||
Line 698: | Line 698: | ||
| | | | ||
| | | | ||
| 108/77, | | 108/77, 275/196 | ||
| ? | | ? | ||
|- | |- | ||
| 98 | | 98 | ||
| 593.{{overline|93}} | | 593.{{overline|93}} | ||
| | | [[45/32|''45/32'']] | ||
| 343/243, 800/567 | | 343/243, 800/567 | ||
| 512/363 | | 484/343, 512/363 | ||
| ? | | ? | ||
|- | |- | ||
Line 717: | Line 717: | ||
| 100 | | 100 | ||
| 606.{{overline|06}} | | 606.{{overline|06}} | ||
| | | [[64/45|''64/45'']] | ||
| 486/343, 567/400 | | 486/343, 567/400 | ||
| 363/256 | | 343/242, 363/256 | ||
| ? | | ? | ||
|- | |- | ||
Line 726: | Line 726: | ||
| | | | ||
| | | | ||
| 77/54, | | 77/54, 392/275 | ||
| ? | | ? | ||
|- | |- | ||
Line 754: | Line 754: | ||
| | | | ||
| | | | ||
| 231/160 | | 231/160, 495/343 | ||
| [[13/9]] | | [[13/9]] | ||
|- | |- | ||
| 106 | | 106 | ||
| 642.{{overline|42}} | | 642.{{overline|42}} | ||
| | | ''625/432'' | ||
| 640/441 | | [[81/56|''81/56'']], 640/441 | ||
| ? | | ? | ||
| ? | | ? | ||
Line 768: | Line 768: | ||
| | | | ||
| | | | ||
| '''[[16/11]]''' | | '''[[16/11]]''', 275/189 | ||
| ? | | ? | ||
|- | |- | ||
Line 787: | Line 787: | ||
| 110 | | 110 | ||
| 666.{{overline|66}} | | 666.{{overline|66}} | ||
| | | ''375/256'' | ||
| [[72/49]], 147/100 | | [[72/49]], 147/100 | ||
| ? | | ? | ||
Line 803: | Line 803: | ||
| [[40/27]] | | [[40/27]] | ||
| ? | | ? | ||
| | | 363/245, 896/605 | ||
| ? | | ? | ||
|- | |- | ||
Line 816: | Line 816: | ||
| 690.{{overline|90}} | | 690.{{overline|90}} | ||
| ? | | ? | ||
| 125/84 | | [[112/75|''112/75'']], 125/84 | ||
| ? | | ? | ||
| ? | | ? | ||
Line 824: | Line 824: | ||
| | | | ||
| | | | ||
| | | 220/147, 539/360 | ||
| ? | | ? | ||
|- | |- | ||
Line 838: | Line 838: | ||
| | | | ||
| | | | ||
| 385/256 | | 264/175, 385/256 | ||
| ? | | ? | ||
|- | |- | ||
Line 871: | Line 871: | ||
| 122 | | 122 | ||
| 739.{{overline|39}} | | 739.{{overline|39}} | ||
| | | ''192/125'' | ||
| [[49/32]], 75/49 | | [[49/32]], 75/49 | ||
| ? | | ? | ||
Line 880: | Line 880: | ||
| | | | ||
| | | | ||
| | | 77/50, 528/343 | ||
| [[20/13]] | | [[20/13]] | ||
|- | |- | ||
Line 887: | Line 887: | ||
| 125/81 | | 125/81 | ||
| [[54/35]] | | [[54/35]] | ||
| | | 560/363, 605/392 | ||
| ? | | ? | ||
|- | |- | ||
Line 908: | Line 908: | ||
| | | | ||
| | | | ||
| 120/77 | | 120/77, 343/220 | ||
| ? | | ? | ||
|- | |- | ||
Line 927: | Line 927: | ||
| 130 | | 130 | ||
| 787.{{overline|87}} | | 787.{{overline|87}} | ||
| | | [[128/81|''128/81'']] | ||
| [[63/40]], 540/343 | | [[63/40]], 540/343 | ||
| 605/384 | | 605/384 | ||
Line 936: | Line 936: | ||
| | | | ||
| | | | ||
| 385/243 | | 198/125, 385/243 | ||
| ? | | ? | ||
|- | |- | ||
| 132 | | 132 | ||
| 800.00 | | 800.00 | ||
| | | ''405/256'' | ||
| [[100/63]], 343/216 | | [[100/63]], 343/216 | ||
| [[192/121]] | | [[192/121]] | ||
Line 957: | Line 957: | ||
| '''[[8/5]]''' | | '''[[8/5]]''' | ||
| ? | | ? | ||
| | | 605/378 | ||
| ? | | ? | ||
|- | |- | ||
Line 964: | Line 964: | ||
| | | | ||
| | | | ||
| 77/48, | | 77/48, 441/275 | ||
| ? | | ? | ||
|- | |- | ||
Line 970: | Line 970: | ||
| 824.{{overline|24}} | | 824.{{overline|24}} | ||
| ? | | ? | ||
| [[45/28]] | | [[45/28]], ''392/243'' | ||
| ? | | ? | ||
| ? | | ? | ||
Line 978: | Line 978: | ||
| | | | ||
| | | | ||
| 160/99 | | 160/99, 396/245 | ||
| [[21/13]] | | [[21/13]] | ||
|- | |- | ||
Line 985: | Line 985: | ||
| 81/50 | | 81/50 | ||
| 175/108 | | 175/108 | ||
| 363/224 | | 196/121, 363/224 | ||
| ? | | ? | ||
|- | |- | ||
Line 992: | Line 992: | ||
| | | | ||
| | | | ||
| [[44/27]] | | [[44/27]], 448/275 | ||
| '''[[13/8]]''' | | '''[[13/8]]''' | ||
|- | |- | ||
| 140 | | 140 | ||
| 848.{{overline|48}} | | 848.{{overline|48}} | ||
| | | ''625/384'' | ||
| [[49/30]], [[80/49]] | | [[49/30]], [[80/49]] | ||
| ? | | ? | ||
Line 1,006: | Line 1,006: | ||
| | | | ||
| | | | ||
| [[18/11]] | | [[18/11]], 275/168 | ||
| [[64/39]] | | [[64/39]] | ||
|- | |- | ||
Line 1,013: | Line 1,013: | ||
| 400/243 | | 400/243 | ||
| 288/175 | | 288/175 | ||
| | | 242/147 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,020: | Line 1,020: | ||
| | | | ||
| | | | ||
| [[33/20]] | | [[33/20]], 490/297 | ||
| [[104/63]] | | [[104/63]] | ||
|- | |- | ||
Line 1,026: | Line 1,026: | ||
| 872.{{overline|72}} | | 872.{{overline|72}} | ||
| ? | | ? | ||
| [[81/49]], | | [[81/49]], ''224/135'' | ||
| | | 200/121 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,041: | Line 1,041: | ||
| [[5/3]] | | [[5/3]] | ||
| ? | | ? | ||
| | | 1008/605 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,062: | Line 1,062: | ||
| | | | ||
| | | | ||
| | | 165/98, 500/297 | ||
| ? | | ? | ||
|- | |- | ||
| 150 | | 150 | ||
| 909.{{overline|09}} | | 909.{{overline|09}} | ||
| | | [[27/16|''27/16'']] | ||
| [[320/189]] | | [[320/189]] | ||
| 1024/605 | | 1024/605 | ||
Line 1,082: | Line 1,082: | ||
| 921.{{overline|21}} | | 921.{{overline|21}} | ||
| ? | | ? | ||
| 245/144 | | [[128/75|''128/75'']], 245/144 | ||
| ? | | ? | ||
| ? | | ? | ||
Line 1,118: | Line 1,118: | ||
| | | | ||
| | | | ||
| | | 343/198, 400/231 | ||
| [[26/15]] | | [[26/15]] | ||
|- | |- | ||
Line 1,151: | Line 1,151: | ||
| 162 | | 162 | ||
| 981.{{overline|81}} | | 981.{{overline|81}} | ||
| | | ''225/128'' | ||
| 432/245, 441/250 | | 432/245, 441/250 | ||
| 640/363 | | 605/343, 640/363 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,160: | Line 1,160: | ||
| | | | ||
| | | | ||
| 99/56, | | 99/56, 175/99 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,188: | Line 1,188: | ||
| | | | ||
| | | | ||
| 88/49 | | 88/49, 539/300 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,195: | Line 1,195: | ||
| [[9/5]] | | [[9/5]] | ||
| ? | | ? | ||
| | | 605/336 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,209: | Line 1,209: | ||
| ? | | ? | ||
| [[49/27]], 800/441 | | [[49/27]], 800/441 | ||
| | | 363/200 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,221: | Line 1,221: | ||
| 172 | | 172 | ||
| 1042.{{overline|42}} | | 1042.{{overline|42}} | ||
| | | ''729/400'' | ||
| [[64/35]], 175/96 | | [[64/35]], 175/96 | ||
| ? | | ? | ||
Line 1,230: | Line 1,230: | ||
| | | | ||
| | | | ||
| [[11/6]] | | [[11/6]], 504/275 | ||
| ? | | ? | ||
|- | |- | ||
| 174 | | 174 | ||
| 1054.{{overline|54}} | | 1054.{{overline|54}} | ||
| | | ''1152/625'' | ||
| [[90/49]], 147/80 | | [[90/49]], 147/80 | ||
| ? | | ? | ||
Line 1,244: | Line 1,244: | ||
| | | | ||
| | | | ||
| 1280/693 | | 231/125, 1280/693 | ||
| [[24/13]] | | [[24/13]] | ||
|- | |- | ||
Line 1,251: | Line 1,251: | ||
| [[50/27]] | | [[50/27]] | ||
| 324/175 | | 324/175 | ||
| 224/121 | | 224/121, 363/196 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,258: | Line 1,258: | ||
| | | | ||
| | | | ||
| 297/160 | | 245/132, 297/160 | ||
| [[13/7]] | | [[13/7]] | ||
|- | |- | ||
Line 1,272: | Line 1,272: | ||
| | | | ||
| | | | ||
| 144/77, | | 144/77, 275/147 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,291: | Line 1,291: | ||
| 182 | | 182 | ||
| 1103.{{overline|03}} | | 1103.{{overline|03}} | ||
| | | ''256/135'' | ||
| 189/100, 648/343 | | 189/100, 648/343 | ||
| [[121/64]] | | [[121/64]], 686/363 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,300: | Line 1,300: | ||
| | | | ||
| | | | ||
| 1024/539 | | 1024/539, 1188/625 | ||
| 91/48 | | 91/48 | ||
|- | |- | ||
| 184 | | 184 | ||
| 1115.{{overline|15}} | | 1115.{{overline|15}} | ||
| | | [[243/128|''243/128'']] | ||
| [[40/21]], 343/180 | | [[40/21]], 343/180 | ||
| 1152/605 | | 1152/605 | ||
Line 1,328: | Line 1,328: | ||
| | | | ||
| | | | ||
| 77/40 | | 77/40, 660/343 | ||
| [[25/13]], [[52/27]] | | [[25/13]], [[52/27]] | ||
|- | |- | ||
Line 1,335: | Line 1,335: | ||
| 625/324 | | 625/324 | ||
| [[27/14]] | | [[27/14]] | ||
| | | 700/363 | ||
| ? | | ? | ||
|- | |- | ||
Line 1,342: | Line 1,342: | ||
| | | | ||
| | | | ||
| [[64/33]] | | [[64/33]], 1100/567 | ||
| [[126/65]] | | [[126/65]] | ||
|- | |- | ||
Line 1,356: | Line 1,356: | ||
| | | | ||
| | | | ||
| | | 343/176 | ||
| [[39/20]] | | [[39/20]] | ||
|- | |- | ||
| 192 | | 192 | ||
| 1163.{{overline|63}} | | 1163.{{overline|63}} | ||
| | | ''125/64'' | ||
| 96/49 | | 49/25, 96/49 | ||
| ? | | ? | ||
| ? | | ? | ||
Line 1,390: | Line 1,390: | ||
| 1187.{{overline|87}} | | 1187.{{overline|87}} | ||
| ? | | ? | ||
| 125/63, | | 125/63, ''448/225'' | ||
| 240/121 | | 240/121 | ||
| 143/72, 336/169 | | 143/72, 336/169 | ||
Line 1,398: | Line 1,398: | ||
| | | | ||
| | | | ||
| 768/385 | | 539/270, 768/385 | ||
| 195/98 | | 195/98, 363/182 | ||
|- | |- | ||
| 198 | | 198 |
Revision as of 09:33, 10 November 2020
This article is a work in progress.
11-limit is done.
This table of 198edo intervals assumes 13-limit patent val ⟨198 314 460 556 685 733].
Intervals highlighted in bold are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. 7-limit intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in italic, for they are consistent under the criterion of 99edo. Intervals otherwise that differ by more than 50%, with odd limit over 729, or with two more simpler mapped to the same degree, are not shown.
# | Cents | 5 limit | 7 limit | 11 limit | 13 limit |
---|---|---|---|---|---|
0 | 0.00 | 1/1 | |||
1 | 6.06 | 385/384, 441/440 | 196/195, 325/324 | ||
2 | 12.12 | ? | 126/125, 225/224 | 121/120 | 144/143, 169/168 |
3 | 18.18 | 99/98, 100/99 | ? | ||
4 | 24.24 | 81/80 | 64/63 | 245/242 | 66/65, 78/77 |
5 | 30.30 | 55/54, 56/55 | ? | ||
6 | 36.36 | 128/125 | 49/48, 50/49 | ? | ? |
7 | 42.42 | 352/343 | 40/39 | ||
8 | 48.48 | 250/243 | 36/35 | ? | ? |
9 | 54.54 | 33/32, 567/550 | 65/63 | ||
10 | 60.60 | 648/625 | 28/27 | 363/350 | ? |
11 | 66.66 | 80/77, 343/330 | 26/25, 27/26 | ||
12 | 72.72 | 25/24 | 729/700 | 126/121 | ? |
13 | 78.78 | 22/21, 288/275 | ? | ||
14 | 84.84 | 256/243 | 21/20, 360/343 | 605/576 | ? |
15 | 90.90 | 539/512, 625/594 | 96/91 | ||
16 | 96.96 | 135/128 | 200/189, 343/324 | 128/121, 363/343 | ? |
17 | 103.03 | 35/33, 297/280 | ? | ||
18 | 109.09 | 16/15 | ? | ? | ? |
19 | 115.15 | 77/72, 294/275 | ? | ||
20 | 121.21 | ? | 15/14, 343/320 | 648/605 | ? |
21 | 127.27 | 264/245, 320/297 | 14/13 | ||
22 | 133.33 | 27/25 | 175/162 | 121/112, 392/363 | ? |
23 | 139.39 | 250/231, 693/640 | 13/12 | ||
24 | 145.45 | 625/576 | 49/45, 160/147 | ? | ? |
25 | 151.51 | 12/11, 275/252 | ? | ||
26 | 157.57 | 800/729 | 35/32, 192/175 | ? | ? |
27 | 163.63 | 11/10 | ? | ||
28 | 169.69 | ? | 54/49, 441/400 | 400/363 | ? |
29 | 175.75 | 256/231 | ? | ||
30 | 181.81 | 10/9 | ? | 672/605 | ? |
31 | 187.87 | 49/44, 600/539 | ? | ||
32 | 193.93 | ? | 28/25, 384/343 | 121/108 | ? |
33 | 200.00 | 55/49, 432/385 | 91/81 | ||
34 | 206.06 | 9/8 | ? | ? | 44/39 |
35 | 212.12 | 112/99, 198/175 | ? | ||
36 | 218.18 | 256/225 | 245/216, 500/441 | 363/320, 686/605 | ? |
37 | 224.24 | 25/22 | 91/80 | ||
38 | 230.30 | ? | 8/7, 343/300 | ? | ? |
39 | 236.36 | 55/48, 63/55 | ? | ||
40 | 242.42 | 144/125 | 147/128, 280/243 | ? | ? |
41 | 248.48 | 231/200, 343/297 | 15/13 | ||
42 | 254.54 | 125/108 | 81/70 | 140/121 | ? |
43 | 260.60 | 64/55, 220/189 | ? | ||
44 | 266.66 | ? | 7/6, 400/343 | ? | ? |
45 | 272.72 | 90/77 | ? | ||
46 | 278.78 | ? | 75/64, 147/125 | ? | ? |
47 | 284.84 | 33/28, 324/275 | ? | ||
48 | 290.90 | 32/27 | 189/160 | 605/512 | 13/11 |
49 | 296.96 | 196/165, 297/250 | ? | ||
50 | 303.03 | ? | 25/21, 343/288 | 144/121 | ? |
51 | 309.09 | 176/147 | ? | ||
52 | 315.15 | 6/5 | ? | 605/504 | ? |
53 | 321.21 | 77/64, 648/539 | ? | ||
54 | 327.27 | ? | 98/81, 135/112 | 121/100 | ? |
55 | 333.33 | 40/33, 297/245 | 63/52 | ||
56 | 339.39 | 243/200 | 175/144 | 147/121 | ? |
57 | 345.45 | 11/9, 336/275 | 39/32 | ||
58 | 351.51 | 768/625 | 49/40, 60/49 | ? | ? |
59 | 357.57 | 27/22, 275/224 | 16/13 | ||
60 | 363.63 | 100/81 | 216/175 | 121/98, 448/363 | ? |
61 | 369.69 | 99/80, 245/198 | 26/21 | ||
62 | 375.75 | ? | 56/45, 243/196 | ? | ? |
63 | 381.81 | 96/77, 343/275 | ? | ||
64 | 387.87 | 5/4 | ? | 756/605 | ? |
65 | 393.93 | 44/35 | ? | ||
66 | 400.00 | 512/405 | 63/50, 432/343 | 121/96 | ? |
67 | 406.06 | 125/99, 486/385 | ? | ||
68 | 412.12 | 81/64 | 80/63, 343/270 | 768/605 | 33/26 |
69 | 418.18 | 14/11, 275/216 | ? | ||
70 | 424.24 | ? | 125/98, 245/192 | ? | ? |
71 | 430.30 | 77/60, 440/343 | ? | ||
72 | 436.36 | 625/486 | 9/7 | ? | ? |
73 | 442.42 | 128/99, 165/128 | ? | ||
74 | 448.48 | 162/125 | 35/27 | 363/280, 784/605 | ? |
75 | 454.54 | 100/77, 343/264 | 13/10 | ||
76 | 460.60 | 125/96 | 64/49, 98/75 | ? | ? |
77 | 466.66 | 55/42, 72/55 | ? | ||
78 | 472.72 | ? | 21/16, 450/343 | ? | ? |
79 | 478.78 | 33/25, 392/297 | ? | ||
80 | 484.84 | ? | 250/189, 324/245 | 160/121 | ? |
81 | 490.90 | 175/132, 297/224 | ? | ||
82 | 496.96 | 4/3 | ? | ? | ? |
83 | 503.03 | 147/110, 385/288 | ? | ||
84 | 509.09 | ? | 75/56, 168/125 | ? | ? |
85 | 515.15 | 66/49, 400/297 | ? | ||
86 | 521.21 | 27/20 | ? | 490/343, 605/448 | ? |
87 | 527.27 | 110/81, 224/165 | ? | ||
88 | 533.33 | 512/375 | 49/36, 200/147 | ? | ? |
89 | 539.39 | 15/11 | ? | ||
90 | 545.45 | 1000/729 | 48/35, 343/250 | ? | ? |
91 | 551.51 | 11/8, 378/275 | ? | ||
92 | 557.57 | 864/625 | 112/81, 441/320 | ? | ? |
93 | 563.63 | 320/231, 686/495 | 18/13 | ||
94 | 569.69 | 25/18 | 243/175 | 168/121 | ? |
95 | 575.75 | 88/63, 384/275 | ? | ||
96 | 581.81 | ? | 7/5, 480/343 | 605/432 | ? |
97 | 587.87 | 108/77, 275/196 | ? | ||
98 | 593.93 | 45/32 | 343/243, 800/567 | 484/343, 512/363 | ? |
99 | 600.00 | 99/70, 140/99 | ? | ||
100 | 606.06 | 64/45 | 486/343, 567/400 | 343/242, 363/256 | ? |
101 | 612.12 | 77/54, 392/275 | ? | ||
102 | 618.18 | ? | 10/7, 343/240 | 864/605 | ? |
103 | 624.24 | 63/44, 275/192 | ? | ||
104 | 630.30 | 36/25 | 350/243 | 121/84 | ? |
105 | 636.36 | 231/160, 495/343 | 13/9 | ||
106 | 642.42 | 625/432 | 81/56, 640/441 | ? | ? |
107 | 648.48 | 16/11, 275/189 | ? | ||
108 | 654.54 | 729/500 | 35/24, 500/343 | ? | ? |
109 | 660.60 | 22/15 | ? | ||
110 | 666.66 | 375/256 | 72/49, 147/100 | ? | ? |
111 | 672.72 | 81/55, 165/112 | ? | ||
112 | 678.78 | 40/27 | ? | 363/245, 896/605 | ? |
113 | 684.84 | 49/33, 297/200 | ? | ||
114 | 690.90 | ? | 112/75, 125/84 | ? | ? |
115 | 696.96 | 220/147, 539/360 | ? | ||
116 | 703.03 | 3/2 | ? | ? | ? |
117 | 709.09 | 264/175, 385/256 | ? | ||
118 | 715.15 | ? | 189/125, 245/162 | 121/80 | ? |
119 | 721.21 | 50/33, 297/196 | ? | ||
120 | 727.27 | ? | 32/21, 343/225 | ? | ? |
121 | 733.33 | 55/36, 84/55 | ? | ||
122 | 739.39 | 192/125 | 49/32, 75/49 | ? | ? |
123 | 745.45 | 77/50, 528/343 | 20/13 | ||
124 | 751.51 | 125/81 | 54/35 | 560/363, 605/392 | ? |
125 | 757.57 | 99/64, 256/165 | ? | ||
126 | 763.63 | 972/625 | 14/9 | ? | ? |
127 | 769.69 | 120/77, 343/220 | ? | ||
128 | 775.75 | ? | 196/125, 384/245 | ? | ? |
129 | 781.81 | 11/7, 432/275 | ? | ||
130 | 787.87 | 128/81 | 63/40, 540/343 | 605/384 | 52/33 |
131 | 793.93 | 198/125, 385/243 | ? | ||
132 | 800.00 | 405/256 | 100/63, 343/216 | 192/121 | ? |
133 | 806.06 | 35/22 | ? | ||
134 | 812.12 | 8/5 | ? | 605/378 | ? |
135 | 818.18 | 77/48, 441/275 | ? | ||
136 | 824.24 | ? | 45/28, 392/243 | ? | ? |
137 | 830.30 | 160/99, 396/245 | 21/13 | ||
138 | 836.36 | 81/50 | 175/108 | 196/121, 363/224 | ? |
139 | 842.42 | 44/27, 448/275 | 13/8 | ||
140 | 848.48 | 625/384 | 49/30, 80/49 | ? | ? |
141 | 854.54 | 18/11, 275/168 | 64/39 | ||
142 | 860.60 | 400/243 | 288/175 | 242/147 | ? |
143 | 866.66 | 33/20, 490/297 | 104/63 | ||
144 | 872.72 | ? | 81/49, 224/135 | 200/121 | ? |
145 | 878.78 | 128/77, 539/324 | ? | ||
146 | 884.84 | 5/3 | ? | 1008/605 | ? |
147 | 890.90 | 147/88 | ? | ||
148 | 896.96 | ? | 42/25, 576/343 | 121/72 | ? |
149 | 903.03 | 165/98, 500/297 | ? | ||
150 | 909.09 | 27/16 | 320/189 | 1024/605 | 22/13 |
151 | 915.15 | 56/33, 275/162 | ? | ||
152 | 921.21 | ? | 128/75, 245/144 | ? | ? |
153 | 927.27 | 77/45 | ? | ||
154 | 933.33 | ? | 12/7, 343/200 | ? | ? |
155 | 939.39 | 55/32, 189/110 | ? | ||
156 | 945.45 | 216/125 | 140/81 | 121/70 | ? |
157 | 951.51 | 343/198, 400/231 | 26/15 | ||
158 | 957.57 | 125/72 | 243/140, 256/147 | ? | ? |
159 | 963.63 | 96/55, 110/63 | ? | ||
160 | 969.69 | ? | 7/4, 600/343 | ? | ? |
161 | 975.75 | 44/25 | 160/91 | ||
162 | 981.81 | 225/128 | 432/245, 441/250 | 605/343, 640/363 | ? |
163 | 987.87 | 99/56, 175/99 | ? | ||
164 | 993.93 | 16/9 | ? | ? | 39/22 |
165 | 1000.00 | 98/55, 385/216 | 162/91 | ||
166 | 1006.06 | ? | 25/14, 343/192 | 216/121 | ? |
167 | 1012.12 | 88/49, 539/300 | ? | ||
168 | 1018.18 | 9/5 | ? | 605/336 | ? |
169 | 1024.24 | 231/128 | ? | ||
170 | 1030.30 | ? | 49/27, 800/441 | 363/200 | ? |
171 | 1036.36 | 20/11 | ? | ||
172 | 1042.42 | 729/400 | 64/35, 175/96 | ? | ? |
173 | 1048.48 | 11/6, 504/275 | ? | ||
174 | 1054.54 | 1152/625 | 90/49, 147/80 | ? | ? |
175 | 1060.60 | 231/125, 1280/693 | 24/13 | ||
176 | 1066.66 | 50/27 | 324/175 | 224/121, 363/196 | ? |
177 | 1072.72 | 245/132, 297/160 | 13/7 | ||
178 | 1078.78 | ? | 28/15, 640/343 | 605/324 | ? |
179 | 1084.84 | 144/77, 275/147 | ? | ||
180 | 1090.90 | 15/8 | ? | ? | ? |
181 | 1096.96 | 66/35, 560/297 | ? | ||
182 | 1103.03 | 256/135 | 189/100, 648/343 | 121/64, 686/363 | ? |
183 | 1109.09 | 1024/539, 1188/625 | 91/48 | ||
184 | 1115.15 | 243/128 | 40/21, 343/180 | 1152/605 | ? |
185 | 1121.21 | 21/11, 275/144 | ? | ||
186 | 1127.27 | 48/25 | 1400/729 | 121/63 | ? |
187 | 1133.33 | 77/40, 660/343 | 25/13, 52/27 | ||
188 | 1139.39 | 625/324 | 27/14 | 700/363 | ? |
189 | 1145.45 | 64/33, 1100/567 | 126/65 | ||
190 | 1151.51 | 243/125 | 35/18 | ? | ? |
191 | 1157.57 | 343/176 | 39/20 | ||
192 | 1163.63 | 125/64 | 49/25, 96/49 | ? | ? |
193 | 1169.69 | 108/55, 55/27 | ? | ||
194 | 1175.75 | 160/81 | 63/32 | 484/245 | 65/33, 77/39 |
195 | 1181.81 | 196/99, 99/50 | ? | ||
196 | 1187.87 | ? | 125/63, 448/225 | 240/121 | 143/72, 336/169 |
197 | 1193.93 | 539/270, 768/385 | 195/98, 363/182 | ||
198 | 1200.00 | 2/1 |