Table of 198edo intervals: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
7-limit is done
11-limit is done
Line 2: Line 2:
This article is a work in progress.
This article is a work in progress.


7-limit is done.  
11-limit is done.  
</div>
</div>


This '''table of [[198edo]] intervals''' assumes 13-limit [[patent val]] {{val|198 314 460 556 685 733}}.  
This '''table of [[198edo]] intervals''' assumes 13-limit [[patent val]] {{val|198 314 460 556 685 733}}.  


Intervals highlighted in '''bold''' are prime harmonics or subharmonics. Intervals that differ from their assigned steps by more than 50% or intervals with odd limit over 729 are not shown. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank.  
Intervals highlighted in '''bold''' are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. 7-limit intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in ''italic'', for they are consistent under the criterion of 99edo. Intervals otherwise that differ by more than 50%, with odd limit over 729, or with two more simpler mapped to the same degree, are not shown. 


{| class="wikitable center-1 right-2"
{| class="wikitable center-1 right-2"
Line 26: Line 26:
|  
|  
|  
|  
| [[385/384]], [[441/440]], [[540/539]]
| [[385/384]], [[441/440]]
| [[196/195]], [[325/324]], [[351/350]], [[364/363]]
| [[196/195]], [[325/324]]
|-
|-
| 2
| 2
| 12.{{overline|12}}
| 12.{{overline|12}}
| ?
| ?
| [[126/125]], [[245/243]]
| [[126/125]], [[225/224|''225/224'']]
| [[121/120]]
| [[121/120]]
| [[144/143]], [[169/168]]
| [[144/143]], [[169/168]]
Line 59: Line 59:
| 6
| 6
| 36.{{overline|36}}
| 36.{{overline|36}}
| ?
| [[128/125|''128/125'']]
| [[49/48]], [[50/49]]
| [[49/48]], [[50/49]]
| ?
| ?
Line 68: Line 68:
|  
|  
|  
|  
| ?
| 352/343
| [[40/39]]
| [[40/39]]
|-
|-
Line 82: Line 82:
|  
|  
|  
|  
| [[33/32]]
| [[33/32]], 567/550
| [[65/63]]
| [[65/63]]
|-
|-
Line 89: Line 89:
| [[648/625]]
| [[648/625]]
| [[28/27]]
| [[28/27]]
| ?
| 363/350
| ?
| ?
|-
|-
Line 96: Line 96:
|  
|  
|  
|  
| [[80/77]]
| [[80/77]], 343/330
| [[26/25]], [[27/26]]
| [[26/25]], [[27/26]]
|-
|-
Line 115: Line 115:
| 14
| 14
| 84.{{overline|84}}
| 84.{{overline|84}}
| ?
| [[256/243|''256/243'']]
| [[21/20]], 360/343
| [[21/20]], 360/343
| 605/576
| 605/576
Line 124: Line 124:
|  
|  
|  
|  
| 539/512
| 539/512, 625/594
| 96/91
| 96/91
|-
|-
| 16
| 16
| 96.{{overline|96}}
| 96.{{overline|96}}
| ?
| [[135/128|''135/128'']]
| 200/189, 343/324
| 200/189, 343/324
| [[128/121]]
| [[128/121]], 363/343
| ?
| ?
|-
|-
Line 152: Line 152:
|  
|  
|  
|  
| 77/72
| 77/72, 294/275
| ?
| ?
|-
|-
Line 166: Line 166:
|  
|  
|  
|  
| 320/297
| 264/245, 320/297
| [[14/13]]
| [[14/13]]
|-
|-
Line 173: Line 173:
| [[27/25]]
| [[27/25]]
| 175/162
| 175/162
| 121/112
| 121/112, 392/363
| ?
| ?
|-
|-
Line 180: Line 180:
|  
|  
|  
|  
| 693/640
| 250/231, 693/640
| [[13/12]]
| [[13/12]]
|-
|-
| 24
| 24
| 145.{{overline|45}}
| 145.{{overline|45}}
| ?
| ''625/576''
| [[49/45]], 160/147
| [[49/45]], 160/147
| ?
| ?
Line 194: Line 194:
|  
|  
|  
|  
| [[12/11]]
| [[12/11]], 275/252
| ?
| ?
|-
|-
| 26
| 26
| 157.{{overline|57}}
| 157.{{overline|57}}
| ?
| ''800/729''
| [[35/32]], 192/175
| [[35/32]], 192/175
| ?
| ?
Line 215: Line 215:
| ?
| ?
| [[54/49]], 441/400
| [[54/49]], 441/400
| ?
| 400/363
| ?
| ?
|-
|-
Line 229: Line 229:
| [[10/9]]
| [[10/9]]
| ?
| ?
| ?
| 672/605
| ?
| ?
|-
|-
Line 236: Line 236:
|  
|  
|  
|  
| 49/44
| 49/44, 600/539
| ?
| ?
|-
|-
Line 264: Line 264:
|  
|  
|  
|  
| 112/99, 275/243
| 112/99, 198/175
| ?
| ?
|-
|-
| 36
| 36
| 218.{{overline|18}}
| 218.{{overline|18}}
| ?
| ''256/225''
| 245/216, 500/441
| 245/216, 500/441
| 363/320
| 363/320, 686/605
| ?
| ?
|-
|-
Line 306: Line 306:
|  
|  
|  
|  
| ?
| 231/200, 343/297
| [[15/13]]
| [[15/13]]
|-
|-
Line 340: Line 340:
| 278.{{overline|78}}
| 278.{{overline|78}}
| ?
| ?
| 147/125, 288/245
| [[75/64|''75/64'']], 147/125
| ?
| ?
| ?
| ?
Line 353: Line 353:
| 48
| 48
| 290.{{overline|90}}
| 290.{{overline|90}}
| ?
| [[32/27|''32/27'']]
| [[189/160]]
| [[189/160]]
| 605/512
| 605/512
Line 362: Line 362:
|  
|  
|  
|  
| 385/324
| 196/165, 297/250
| ?
| ?
|-
|-
Line 383: Line 383:
| [[6/5]]
| [[6/5]]
| ?
| ?
| ?
| 605/504
| ?
| ?
|-
|-
Line 396: Line 396:
| 327.{{overline|27}}
| 327.{{overline|27}}
| ?
| ?
| [[98/81]], 756/625
| 98/81, ''135/112''
| ?
| 121/100
| ?
| ?
|-
|-
Line 404: Line 404:
|  
|  
|  
|  
| [[40/33]]
| [[40/33]], 297/245
| [[63/52]]
| [[63/52]]
|-
|-
Line 411: Line 411:
| 243/200
| 243/200
| 175/144
| 175/144
| ?
| 147/121
| ?
| ?
|-
|-
Line 418: Line 418:
|  
|  
|  
|  
| [[11/9]]
| [[11/9]], 336/275
| [[39/32]]
| [[39/32]]
|-
|-
| 58
| 58
| 351.{{overline|51}}
| 351.{{overline|51}}
| ?
| ''768/625''
| [[49/40]], [[60/49]]
| [[49/40]], [[60/49]]
| ?
| ?
Line 432: Line 432:
|  
|  
|  
|  
| [[27/22]]
| [[27/22]], 275/224
| '''[[16/13]]'''
| '''[[16/13]]'''
|-
|-
Line 439: Line 439:
| 100/81
| 100/81
| 216/175
| 216/175
| 448/363
| 121/98, 448/363
| ?
| ?
|-
|-
Line 446: Line 446:
|  
|  
|  
|  
| 99/80
| 99/80, 245/198
| [[26/21]]
| [[26/21]]
|-
|-
Line 452: Line 452:
| 375.{{overline|75}}
| 375.{{overline|75}}
| ?
| ?
| [[56/45]]
| [[56/45]], ''243/196''
| ?
| ?
| ?
| ?
Line 460: Line 460:
|  
|  
|  
|  
| 96/77, 539/432
| 96/77, 343/275
| ?
| ?
|-
|-
Line 467: Line 467:
| '''[[5/4]]'''
| '''[[5/4]]'''
| ?
| ?
| ?
| 756/605
| ?
| ?
|-
|-
Line 479: Line 479:
| 66
| 66
| 400.00
| 400.00
| ?
| ''512/405''
| [[63/50]], 432/343
| [[63/50]], 432/343
| [[121/96]]
| [[121/96]]
Line 488: Line 488:
|  
|  
|  
|  
| 486/385
| 125/99, 486/385
| ?
| ?
|-
|-
| 68
| 68
| 412.{{overline|12}}
| 412.{{overline|12}}
| ?
| [[81/64|''81/64'']]
| [[80/63]], 343/270
| [[80/63]], 343/270
| 768/605
| 768/605
Line 516: Line 516:
|  
|  
|  
|  
| 77/60
| 77/60, 440/343
| ?
| ?
|-
|-
Line 537: Line 537:
| 162/125
| 162/125
| [[35/27]]
| [[35/27]]
| ?
| 363/280, 784/605
| ?
| ?
|-
|-
Line 544: Line 544:
|  
|  
|  
|  
| ?
| 100/77, 343/264
| [[13/10]]
| [[13/10]]
|-
|-
| 76
| 76
| 460.{{overline|60}}
| 460.{{overline|60}}
| ?
| ''125/96''
| [[64/49]], 98/75
| [[64/49]], 98/75
| ?
| ?
Line 586: Line 586:
|  
|  
|  
|  
| 297/224, 512/385
| 175/132, 297/224
| ?
| ?
|-
|-
Line 600: Line 600:
|  
|  
|  
|  
| 385/288
| 147/110, 385/288
| ?
| ?
|-
|-
Line 606: Line 606:
| 509.{{overline|09}}
| 509.{{overline|09}}
| ?
| ?
| 343/256
| [[75/56|''75/56'']], 168/125
| ?
| ?
| ?
| ?
Line 621: Line 621:
| [[27/20]]
| [[27/20]]
| ?
| ?
| ?
| 490/343, 605/448
| ?
| ?
|-
|-
Line 633: Line 633:
| 88
| 88
| 533.{{overline|33}}
| 533.{{overline|33}}
| ?
| ''512/375''
| [[49/36]], 200/147
| [[49/36]], 200/147
| ?
| ?
Line 656: Line 656:
|  
|  
|  
|  
| '''[[11/8]]'''
| '''[[11/8]]''', 378/275
| ?
| ?
|-
|-
| 92
| 92
| 557.{{overline|57}}
| 557.{{overline|57}}
| ?
| ''864/625''
| 441/320
| [[112/81|''112/81'']], 441/320
| ?
| ?
| ?
| ?
Line 670: Line 670:
|  
|  
|  
|  
| 320/231
| 320/231, 686/495
| [[18/13]]
| [[18/13]]
|-
|-
Line 698: Line 698:
|  
|  
|  
|  
| 108/77, 539/384
| 108/77, 275/196
| ?
| ?
|-
|-
| 98
| 98
| 593.{{overline|93}}
| 593.{{overline|93}}
| ?
| [[45/32|''45/32'']]
| 343/243, 800/567
| 343/243, 800/567
| 512/363
| 484/343, 512/363
| ?
| ?
|-
|-
Line 717: Line 717:
| 100
| 100
| 606.{{overline|06}}
| 606.{{overline|06}}
| ?
| [[64/45|''64/45'']]
| 486/343, 567/400
| 486/343, 567/400
| 363/256
| 343/242, 363/256
| ?
| ?
|-
|-
Line 726: Line 726:
|  
|  
|  
|  
| 77/54, 768/539
| 77/54, 392/275
| ?
| ?
|-
|-
Line 754: Line 754:
|  
|  
|  
|  
| 231/160
| 231/160, 495/343
| [[13/9]]
| [[13/9]]
|-
|-
| 106
| 106
| 642.{{overline|42}}
| 642.{{overline|42}}
| ?
| ''625/432''
| 640/441
| [[81/56|''81/56'']], 640/441
| ?
| ?
| ?
| ?
Line 768: Line 768:
|  
|  
|  
|  
| '''[[16/11]]'''
| '''[[16/11]]''', 275/189
| ?
| ?
|-
|-
Line 787: Line 787:
| 110
| 110
| 666.{{overline|66}}
| 666.{{overline|66}}
| ?
| ''375/256''
| [[72/49]], 147/100
| [[72/49]], 147/100
| ?
| ?
Line 803: Line 803:
| [[40/27]]
| [[40/27]]
| ?
| ?
| ?
| 363/245, 896/605
| ?
| ?
|-
|-
Line 816: Line 816:
| 690.{{overline|90}}
| 690.{{overline|90}}
| ?
| ?
| 125/84, 512/343
| [[112/75|''112/75'']], 125/84
| ?
| ?
| ?
| ?
Line 824: Line 824:
|  
|  
|  
|  
| 576/385
| 220/147, 539/360
| ?
| ?
|-
|-
Line 838: Line 838:
|  
|  
|  
|  
| 385/256, 448/297
| 264/175, 385/256
| ?
| ?
|-
|-
Line 871: Line 871:
| 122
| 122
| 739.{{overline|39}}
| 739.{{overline|39}}
| ?
| ''192/125''
| [[49/32]], 75/49
| [[49/32]], 75/49
| ?
| ?
Line 880: Line 880:
|  
|  
|  
|  
| ?
| 77/50, 528/343
| [[20/13]]
| [[20/13]]
|-
|-
Line 887: Line 887:
| 125/81
| 125/81
| [[54/35]]
| [[54/35]]
| ?
| 560/363, 605/392
| ?
| ?
|-
|-
Line 908: Line 908:
|  
|  
|  
|  
| 120/77
| 120/77, 343/220
| ?
| ?
|-
|-
Line 927: Line 927:
| 130
| 130
| 787.{{overline|87}}
| 787.{{overline|87}}
| ?
| [[128/81|''128/81'']]
| [[63/40]], 540/343
| [[63/40]], 540/343
| 605/384
| 605/384
Line 936: Line 936:
|  
|  
|  
|  
| 385/243
| 198/125, 385/243
| ?
| ?
|-
|-
| 132
| 132
| 800.00
| 800.00
| ?
| ''405/256''
| [[100/63]], 343/216
| [[100/63]], 343/216
| [[192/121]]
| [[192/121]]
Line 957: Line 957:
| '''[[8/5]]'''
| '''[[8/5]]'''
| ?
| ?
| ?
| 605/378
| ?
| ?
|-
|-
Line 964: Line 964:
|  
|  
|  
|  
| 77/48, 864/539
| 77/48, 441/275
| ?
| ?
|-
|-
Line 970: Line 970:
| 824.{{overline|24}}
| 824.{{overline|24}}
| ?
| ?
| [[45/28]]
| [[45/28]], ''392/243''
| ?
| ?
| ?
| ?
Line 978: Line 978:
|  
|  
|  
|  
| 160/99
| 160/99, 396/245
| [[21/13]]
| [[21/13]]
|-
|-
Line 985: Line 985:
| 81/50
| 81/50
| 175/108
| 175/108
| 363/224
| 196/121, 363/224
| ?
| ?
|-
|-
Line 992: Line 992:
|  
|  
|  
|  
| [[44/27]]
| [[44/27]], 448/275
| '''[[13/8]]'''
| '''[[13/8]]'''
|-
|-
| 140
| 140
| 848.{{overline|48}}
| 848.{{overline|48}}
| ?
| ''625/384''
| [[49/30]], [[80/49]]
| [[49/30]], [[80/49]]
| ?
| ?
Line 1,006: Line 1,006:
|  
|  
|  
|  
| [[18/11]]
| [[18/11]], 275/168
| [[64/39]]
| [[64/39]]
|-
|-
Line 1,013: Line 1,013:
| 400/243
| 400/243
| 288/175
| 288/175
| ?
| 242/147
| ?
| ?
|-
|-
Line 1,020: Line 1,020:
|  
|  
|  
|  
| [[33/20]]
| [[33/20]], 490/297
| [[104/63]]
| [[104/63]]
|-
|-
Line 1,026: Line 1,026:
| 872.{{overline|72}}
| 872.{{overline|72}}
| ?
| ?
| [[81/49]], 625/378
| [[81/49]], ''224/135''
| ?
| 200/121
| ?
| ?
|-
|-
Line 1,041: Line 1,041:
| [[5/3]]
| [[5/3]]
| ?
| ?
| ?
| 1008/605
| ?
| ?
|-
|-
Line 1,062: Line 1,062:
|  
|  
|  
|  
| 648/385
| 165/98, 500/297
| ?
| ?
|-
|-
| 150
| 150
| 909.{{overline|09}}
| 909.{{overline|09}}
| ?
| [[27/16|''27/16'']]
| [[320/189]]
| [[320/189]]
| 1024/605
| 1024/605
Line 1,082: Line 1,082:
| 921.{{overline|21}}
| 921.{{overline|21}}
| ?
| ?
| 245/144, 250/147
| [[128/75|''128/75'']], 245/144
| ?
| ?
| ?
| ?
Line 1,118: Line 1,118:
|  
|  
|  
|  
| ?
| 343/198, 400/231
| [[26/15]]
| [[26/15]]
|-
|-
Line 1,151: Line 1,151:
| 162
| 162
| 981.{{overline|81}}
| 981.{{overline|81}}
| ?
| ''225/128''
| 432/245, 441/250
| 432/245, 441/250
| 640/363
| 605/343, 640/363
| ?
| ?
|-
|-
Line 1,160: Line 1,160:
|  
|  
|  
|  
| 99/56, 486/275
| 99/56, 175/99
| ?
| ?
|-
|-
Line 1,188: Line 1,188:
|  
|  
|  
|  
| 88/49
| 88/49, 539/300
| ?
| ?
|-
|-
Line 1,195: Line 1,195:
| [[9/5]]
| [[9/5]]
| ?
| ?
| ?
| 605/336
| ?
| ?
|-
|-
Line 1,209: Line 1,209:
| ?
| ?
| [[49/27]], 800/441
| [[49/27]], 800/441
| ?
| 363/200
| ?
| ?
|-
|-
Line 1,221: Line 1,221:
| 172
| 172
| 1042.{{overline|42}}
| 1042.{{overline|42}}
| ?
| ''729/400''
| [[64/35]], 175/96
| [[64/35]], 175/96
| ?
| ?
Line 1,230: Line 1,230:
|  
|  
|  
|  
| [[11/6]]
| [[11/6]], 504/275
| ?
| ?
|-
|-
| 174
| 174
| 1054.{{overline|54}}
| 1054.{{overline|54}}
| ?
| ''1152/625''
| [[90/49]], 147/80
| [[90/49]], 147/80
| ?
| ?
Line 1,244: Line 1,244:
|  
|  
|  
|  
| 1280/693
| 231/125, 1280/693
| [[24/13]]
| [[24/13]]
|-
|-
Line 1,251: Line 1,251:
| [[50/27]]
| [[50/27]]
| 324/175
| 324/175
| 224/121
| 224/121, 363/196
| ?
| ?
|-
|-
Line 1,258: Line 1,258:
|  
|  
|  
|  
| 297/160
| 245/132, 297/160
| [[13/7]]
| [[13/7]]
|-
|-
Line 1,272: Line 1,272:
|  
|  
|  
|  
| 144/77, 539/288
| 144/77, 275/147
| ?
| ?
|-
|-
Line 1,291: Line 1,291:
| 182
| 182
| 1103.{{overline|03}}
| 1103.{{overline|03}}
| ?
| ''256/135''
| 189/100, 648/343
| 189/100, 648/343
| [[121/64]]
| [[121/64]], 686/363
| ?
| ?
|-
|-
Line 1,300: Line 1,300:
|  
|  
|  
|  
| 1024/539
| 1024/539, 1188/625
| 91/48
| 91/48
|-
|-
| 184
| 184
| 1115.{{overline|15}}
| 1115.{{overline|15}}
| ?
| [[243/128|''243/128'']]
| [[40/21]], 343/180
| [[40/21]], 343/180
| 1152/605
| 1152/605
Line 1,328: Line 1,328:
|  
|  
|  
|  
| 77/40
| 77/40, 660/343
| [[25/13]], [[52/27]]
| [[25/13]], [[52/27]]
|-
|-
Line 1,335: Line 1,335:
| 625/324
| 625/324
| [[27/14]]
| [[27/14]]
| ?
| 700/363
| ?
| ?
|-
|-
Line 1,342: Line 1,342:
|  
|  
|  
|  
| [[64/33]]
| [[64/33]], 1100/567
| [[126/65]]
| [[126/65]]
|-
|-
Line 1,356: Line 1,356:
|  
|  
|  
|  
| ?
| 343/176
| [[39/20]]
| [[39/20]]
|-
|-
| 192
| 192
| 1163.{{overline|63}}
| 1163.{{overline|63}}
| ?
| ''125/64''
| 96/49, 49/25
| 49/25, 96/49
| ?
| ?
| ?
| ?
Line 1,390: Line 1,390:
| 1187.{{overline|87}}
| 1187.{{overline|87}}
| ?
| ?
| 125/63, 486/245
| 125/63, ''448/225''
| 240/121
| 240/121
| 143/72, 336/169
| 143/72, 336/169
Line 1,398: Line 1,398:
|  
|  
|  
|  
| 768/385, 880/441, 539/270
| 539/270, 768/385
| 195/98, 648/325, 700/351, 363/182
| 195/98, 363/182
|-
|-
| 198
| 198

Revision as of 09:33, 10 November 2020

This article is a work in progress.

11-limit is done.

This table of 198edo intervals assumes 13-limit patent val 198 314 460 556 685 733].

Intervals highlighted in bold are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. 7-limit intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in italic, for they are consistent under the criterion of 99edo. Intervals otherwise that differ by more than 50%, with odd limit over 729, or with two more simpler mapped to the same degree, are not shown.

# Cents 5 limit 7 limit 11 limit 13 limit
0 0.00 1/1
1 6.06 385/384, 441/440 196/195, 325/324
2 12.12 ? 126/125, 225/224 121/120 144/143, 169/168
3 18.18 99/98, 100/99 ?
4 24.24 81/80 64/63 245/242 66/65, 78/77
5 30.30 55/54, 56/55 ?
6 36.36 128/125 49/48, 50/49 ? ?
7 42.42 352/343 40/39
8 48.48 250/243 36/35 ? ?
9 54.54 33/32, 567/550 65/63
10 60.60 648/625 28/27 363/350 ?
11 66.66 80/77, 343/330 26/25, 27/26
12 72.72 25/24 729/700 126/121 ?
13 78.78 22/21, 288/275 ?
14 84.84 256/243 21/20, 360/343 605/576 ?
15 90.90 539/512, 625/594 96/91
16 96.96 135/128 200/189, 343/324 128/121, 363/343 ?
17 103.03 35/33, 297/280 ?
18 109.09 16/15 ? ? ?
19 115.15 77/72, 294/275 ?
20 121.21 ? 15/14, 343/320 648/605 ?
21 127.27 264/245, 320/297 14/13
22 133.33 27/25 175/162 121/112, 392/363 ?
23 139.39 250/231, 693/640 13/12
24 145.45 625/576 49/45, 160/147 ? ?
25 151.51 12/11, 275/252 ?
26 157.57 800/729 35/32, 192/175 ? ?
27 163.63 11/10 ?
28 169.69 ? 54/49, 441/400 400/363 ?
29 175.75 256/231 ?
30 181.81 10/9 ? 672/605 ?
31 187.87 49/44, 600/539 ?
32 193.93 ? 28/25, 384/343 121/108 ?
33 200.00 55/49, 432/385 91/81
34 206.06 9/8 ? ? 44/39
35 212.12 112/99, 198/175 ?
36 218.18 256/225 245/216, 500/441 363/320, 686/605 ?
37 224.24 25/22 91/80
38 230.30 ? 8/7, 343/300 ? ?
39 236.36 55/48, 63/55 ?
40 242.42 144/125 147/128, 280/243 ? ?
41 248.48 231/200, 343/297 15/13
42 254.54 125/108 81/70 140/121 ?
43 260.60 64/55, 220/189 ?
44 266.66 ? 7/6, 400/343 ? ?
45 272.72 90/77 ?
46 278.78 ? 75/64, 147/125 ? ?
47 284.84 33/28, 324/275 ?
48 290.90 32/27 189/160 605/512 13/11
49 296.96 196/165, 297/250 ?
50 303.03 ? 25/21, 343/288 144/121 ?
51 309.09 176/147 ?
52 315.15 6/5 ? 605/504 ?
53 321.21 77/64, 648/539 ?
54 327.27 ? 98/81, 135/112 121/100 ?
55 333.33 40/33, 297/245 63/52
56 339.39 243/200 175/144 147/121 ?
57 345.45 11/9, 336/275 39/32
58 351.51 768/625 49/40, 60/49 ? ?
59 357.57 27/22, 275/224 16/13
60 363.63 100/81 216/175 121/98, 448/363 ?
61 369.69 99/80, 245/198 26/21
62 375.75 ? 56/45, 243/196 ? ?
63 381.81 96/77, 343/275 ?
64 387.87 5/4 ? 756/605 ?
65 393.93 44/35 ?
66 400.00 512/405 63/50, 432/343 121/96 ?
67 406.06 125/99, 486/385 ?
68 412.12 81/64 80/63, 343/270 768/605 33/26
69 418.18 14/11, 275/216 ?
70 424.24 ? 125/98, 245/192 ? ?
71 430.30 77/60, 440/343 ?
72 436.36 625/486 9/7 ? ?
73 442.42 128/99, 165/128 ?
74 448.48 162/125 35/27 363/280, 784/605 ?
75 454.54 100/77, 343/264 13/10
76 460.60 125/96 64/49, 98/75 ? ?
77 466.66 55/42, 72/55 ?
78 472.72 ? 21/16, 450/343 ? ?
79 478.78 33/25, 392/297 ?
80 484.84 ? 250/189, 324/245 160/121 ?
81 490.90 175/132, 297/224 ?
82 496.96 4/3 ? ? ?
83 503.03 147/110, 385/288 ?
84 509.09 ? 75/56, 168/125 ? ?
85 515.15 66/49, 400/297 ?
86 521.21 27/20 ? 490/343, 605/448 ?
87 527.27 110/81, 224/165 ?
88 533.33 512/375 49/36, 200/147 ? ?
89 539.39 15/11 ?
90 545.45 1000/729 48/35, 343/250 ? ?
91 551.51 11/8, 378/275 ?
92 557.57 864/625 112/81, 441/320 ? ?
93 563.63 320/231, 686/495 18/13
94 569.69 25/18 243/175 168/121 ?
95 575.75 88/63, 384/275 ?
96 581.81 ? 7/5, 480/343 605/432 ?
97 587.87 108/77, 275/196 ?
98 593.93 45/32 343/243, 800/567 484/343, 512/363 ?
99 600.00 99/70, 140/99 ?
100 606.06 64/45 486/343, 567/400 343/242, 363/256 ?
101 612.12 77/54, 392/275 ?
102 618.18 ? 10/7, 343/240 864/605 ?
103 624.24 63/44, 275/192 ?
104 630.30 36/25 350/243 121/84 ?
105 636.36 231/160, 495/343 13/9
106 642.42 625/432 81/56, 640/441 ? ?
107 648.48 16/11, 275/189 ?
108 654.54 729/500 35/24, 500/343 ? ?
109 660.60 22/15 ?
110 666.66 375/256 72/49, 147/100 ? ?
111 672.72 81/55, 165/112 ?
112 678.78 40/27 ? 363/245, 896/605 ?
113 684.84 49/33, 297/200 ?
114 690.90 ? 112/75, 125/84 ? ?
115 696.96 220/147, 539/360 ?
116 703.03 3/2 ? ? ?
117 709.09 264/175, 385/256 ?
118 715.15 ? 189/125, 245/162 121/80 ?
119 721.21 50/33, 297/196 ?
120 727.27 ? 32/21, 343/225 ? ?
121 733.33 55/36, 84/55 ?
122 739.39 192/125 49/32, 75/49 ? ?
123 745.45 77/50, 528/343 20/13
124 751.51 125/81 54/35 560/363, 605/392 ?
125 757.57 99/64, 256/165 ?
126 763.63 972/625 14/9 ? ?
127 769.69 120/77, 343/220 ?
128 775.75 ? 196/125, 384/245 ? ?
129 781.81 11/7, 432/275 ?
130 787.87 128/81 63/40, 540/343 605/384 52/33
131 793.93 198/125, 385/243 ?
132 800.00 405/256 100/63, 343/216 192/121 ?
133 806.06 35/22 ?
134 812.12 8/5 ? 605/378 ?
135 818.18 77/48, 441/275 ?
136 824.24 ? 45/28, 392/243 ? ?
137 830.30 160/99, 396/245 21/13
138 836.36 81/50 175/108 196/121, 363/224 ?
139 842.42 44/27, 448/275 13/8
140 848.48 625/384 49/30, 80/49 ? ?
141 854.54 18/11, 275/168 64/39
142 860.60 400/243 288/175 242/147 ?
143 866.66 33/20, 490/297 104/63
144 872.72 ? 81/49, 224/135 200/121 ?
145 878.78 128/77, 539/324 ?
146 884.84 5/3 ? 1008/605 ?
147 890.90 147/88 ?
148 896.96 ? 42/25, 576/343 121/72 ?
149 903.03 165/98, 500/297 ?
150 909.09 27/16 320/189 1024/605 22/13
151 915.15 56/33, 275/162 ?
152 921.21 ? 128/75, 245/144 ? ?
153 927.27 77/45 ?
154 933.33 ? 12/7, 343/200 ? ?
155 939.39 55/32, 189/110 ?
156 945.45 216/125 140/81 121/70 ?
157 951.51 343/198, 400/231 26/15
158 957.57 125/72 243/140, 256/147 ? ?
159 963.63 96/55, 110/63 ?
160 969.69 ? 7/4, 600/343 ? ?
161 975.75 44/25 160/91
162 981.81 225/128 432/245, 441/250 605/343, 640/363 ?
163 987.87 99/56, 175/99 ?
164 993.93 16/9 ? ? 39/22
165 1000.00 98/55, 385/216 162/91
166 1006.06 ? 25/14, 343/192 216/121 ?
167 1012.12 88/49, 539/300 ?
168 1018.18 9/5 ? 605/336 ?
169 1024.24 231/128 ?
170 1030.30 ? 49/27, 800/441 363/200 ?
171 1036.36 20/11 ?
172 1042.42 729/400 64/35, 175/96 ? ?
173 1048.48 11/6, 504/275 ?
174 1054.54 1152/625 90/49, 147/80 ? ?
175 1060.60 231/125, 1280/693 24/13
176 1066.66 50/27 324/175 224/121, 363/196 ?
177 1072.72 245/132, 297/160 13/7
178 1078.78 ? 28/15, 640/343 605/324 ?
179 1084.84 144/77, 275/147 ?
180 1090.90 15/8 ? ? ?
181 1096.96 66/35, 560/297 ?
182 1103.03 256/135 189/100, 648/343 121/64, 686/363 ?
183 1109.09 1024/539, 1188/625 91/48
184 1115.15 243/128 40/21, 343/180 1152/605 ?
185 1121.21 21/11, 275/144 ?
186 1127.27 48/25 1400/729 121/63 ?
187 1133.33 77/40, 660/343 25/13, 52/27
188 1139.39 625/324 27/14 700/363 ?
189 1145.45 64/33, 1100/567 126/65
190 1151.51 243/125 35/18 ? ?
191 1157.57 343/176 39/20
192 1163.63 125/64 49/25, 96/49 ? ?
193 1169.69 108/55, 55/27 ?
194 1175.75 160/81 63/32 484/245 65/33, 77/39
195 1181.81 196/99, 99/50 ?
196 1187.87 ? 125/63, 448/225 240/121 143/72, 336/169
197 1193.93 539/270, 768/385 195/98, 363/182
198 1200.00 2/1