User:Ganaram inukshuk/Sandbox: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
No edit summary
Line 33: Line 33:
</syntaxhighlight>
</syntaxhighlight>
Instances of module for testing:
Instances of module for testing:
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=5L 2s
|Step Ratio=
|MOS Prefix=
|Show Abbreviations=
|Number of Alterations=
|JI Ratios=
}}
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=5L 4s
|Step Ratio=2
|MOS Prefix=
|Show Abbreviations=
|Number of Alterations=
|JI Ratios=
}}


{{#invoke:MOS_degrees_v2|mos_degrees_frame
{{#invoke:MOS_degrees_v2|mos_degrees_frame
Line 50: Line 68:
m6md: 7/4;
m6md: 7/4;
P7md: 2/1
P7md: 2/1
}}
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=5L 2s
|Step Ratio=2/1; 3/1; 3/2; 79/36
|MOS Prefix=
|Show Abbreviations=1
|Number of Alterations=0
|JI Ratios=P4md: 3/2; P3md: 4/3
}}
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=5L 4s
|Step Ratio=2/1; 3/1; 3/2
|MOS Prefix=
|Show Abbreviations=1
|Number of Alterations=0
|JI Ratios=
}}
}}


Line 74: Line 74:
|+Scale degrees of 5L 2s
|+Scale degrees of 5L 2s
! rowspan="2" |Scale degree
! rowspan="2" |Scale degree
! colspan="2" | Basic 5L 2s
! colspan="2" |Basic 5L 2s
(12edo, L:s = 2:1)
(12edo, L:s = 2:1)
! colspan="2" | Basic 5L 2s
! colspan="2" |Basic 5L 2s
(12edo, L:s = 2:1)
(12edo, L:s = 2:1)
|-
|-
Line 97: Line 97:
|-
|-
|Major 1-diadegree
|Major 1-diadegree
| 2
|2
|200
|200
|2
|2
Line 116: Line 116:
|'''Perfect 3-diadegree'''
|'''Perfect 3-diadegree'''
|5
|5
| 500
|500
|5
|5
|500
|500
Line 152: Line 152:
|Minor 6-diadegree
|Minor 6-diadegree
|10
|10
| 1000
|1000
|10
| 10
|1000
|1000
|-
|-
Line 171: Line 171:
|+Scale degrees of 5L 2s (with optional columns)
|+Scale degrees of 5L 2s (with optional columns)
! rowspan="2" |Scale degree
! rowspan="2" |Scale degree
! rowspan="2" | Abbrev.
! rowspan="2" |Abbrev.
! rowspan="2" | On C
! rowspan="2" |On C
! colspan="2" | Basic 5L 2s
! colspan="2" |Basic 5L 2s
(12edo, L:s = 2:1)
(12edo, L:s = 2:1)
! rowspan="2" |Approx. JI ratios
! rowspan="2" |Approx. JI ratios
Line 218: Line 218:
|P3md
|P3md
|F
|F
| 5
|5
|500
|500
|4/3
|4/3
Line 232: Line 232:
|d4md
|d4md
|Gb
|Gb
| 6
|6
|600
|600
|
|
Line 267: Line 267:
|M6md
|M6md
|B
|B
| 11
|11
|1100
|1100
|
|
Line 283: Line 283:
|+3L 4s step sizes
|+3L 4s step sizes
! rowspan="2" |Interval
! rowspan="2" |Interval
! colspan="2" | Basic 3L 4s
! colspan="2" |Basic 3L 4s
(10edo, L:s = 2:1)
(10edo, L:s = 2:1)
! colspan="2" |Hard 3L 4s
! colspan="2" |Hard 3L 4s
Line 299: Line 299:
|-
|-
|Large step
|Large step
|2
| 2
|240¢
|240¢
|3
|3
| 276.9¢
|276.9¢
|3
|3
|211.8¢
|211.8¢
Line 308: Line 308:
|-
|-
|Small step
|Small step
|1
| 1
|120¢
|120¢
|1
|1
Line 330: Line 330:
*JI ratios column only shows if there are any ratios to show
*JI ratios column only shows if there are any ratios to show


===Mbox template test ===
===Mbox template test===
These would be their own templates.
These would be their own templates.


Line 344: Line 344:
==Math symbols test==
==Math symbols test==


===Isolated symbols===
===Isolated symbols ===
<math>T := [ t_1, t_2, ..., t_m ]</math>
<math>T := [ t_1, t_2, ..., t_m ]</math>
<math>S := [ s_1, s_2, ..., s_m ]</math>
<math>S := [ s_1, s_2, ..., s_m ]</math>
Line 361: Line 361:
|+<!-- caption -->Intervals of 2L 5s for each mode
|+<!-- caption -->Intervals of 2L 5s for each mode
|-
|-
!Mode!!UDP!! align="right" |Rotational order!! align="right" |mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!! 6-mosstep!!mosoctave
!Mode!!UDP!! align="right" |Rotational order!! align="right" |mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!!6-mosstep!!mosoctave
|-
|-
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|-
|-
|LsssLss ||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|LsssLss||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLssLss ||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLsssLs ||3<nowiki>|</nowiki>3|| align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|sLsssLs||3<nowiki>|</nowiki>3|| align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLssLs ||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|ssLssLs||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLsssL ||1<nowiki>|</nowiki>5|| align="right" |1|| align="right" |0||s||2s||L+2s||L+3s||L+4s||L+5s||2L+5s
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1|| align="right" |0||s||2s||L+2s||L+3s||L+4s||L+5s||2L+5s
|-
|-
|sssLssL ||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s ||3s||L+3s||L+4s||L+5s||2L+5s
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s|| L+3s||L+4s||L+5s||2L+5s
|}
|}


Line 382: Line 382:
|+Degrees of 2L 5s for each mode
|+Degrees of 2L 5s for each mode
|-
|-
! Mode!!UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
!Mode!! UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
|-
|-
|LssLsss ||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major||major||perfect
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major||major||perfect
|-
|-
|LsssLss ||5<nowiki>|</nowiki>1|| align="right" |3||perfect ||major||major||perfect||perfect||major||major||perfect
|LsssLss||5<nowiki>|</nowiki>1|| align="right" |3||perfect||major ||major||perfect||perfect||major||major||perfect
|-
|-
|sLssLss ||4<nowiki>|</nowiki>2|| align="right" |6||perfect||minor||major||perfect||perfect||major||major||perfect
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6||perfect||minor||major||perfect||perfect||major||major||perfect
|-
|-
|sLsssLs ||3<nowiki>|</nowiki>3|| align="right" |2||perfect||minor||major||perfect||perfect||minor||major||perfect
|sLsssLs||3<nowiki>|</nowiki>3|| align="right" |2||perfect||minor||major||perfect||perfect||minor||major||perfect
|-
|-
|ssLssLs ||2<nowiki>|</nowiki>4|| align="right" |5||perfect||minor||minor||perfect||perfect||minor||major||perfect
|ssLssLs||2<nowiki>|</nowiki>4|| align="right" |5||perfect||minor||minor||perfect||perfect||minor||major||perfect
|-
|-
|ssLsssL ||1<nowiki>|</nowiki>5|| align="right" |1||perfect||minor||minor||perfect||perfect||minor||minor||perfect
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1||perfect||minor||minor||perfect||perfect||minor||minor||perfect
|-
|-
|sssLssL ||0<nowiki>|</nowiki>6|| align="right" |4||perfect||minor||minor||diminished||perfect||minor||minor ||perfect
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4||perfect||minor||minor||diminished||perfect||minor||minor||perfect
|}
|}
Note: don't merge cells on a table with sorting.
Note: don't merge cells on a table with sorting.
Line 403: Line 403:
|-
|-
!Mode
!Mode
!Mode name!!UDP!! align="right" |Rotational order!! align="right" |mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!!6-mosstep!!mosoctave
!Mode name!! UDP!! align="right" |Rotational order!! align="right" |mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!!6-mosstep!!mosoctave
|-
|-
|LssLsss
|LssLsss
|antilocrian ||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" | 0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|antilocrian||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L|| L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|-
|-
|LsssLss
|LsssLss
|antiphrygian ||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|antiphrygian||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLssLss
|sLssLss
|anti-aeolian ||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|anti-aeolian||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLsssLs
|sLsssLs
Line 418: Line 418:
|-
|-
|ssLssLs
|ssLssLs
|antimixolydian ||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|antimixolydian||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLsssL
|ssLsssL
Line 424: Line 424:
|-
|-
|sssLssL
|sssLssL
|antilydian ||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s||2L+5s
|antilydian||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s||2L+5s
|}
|}
{| class="wikitable sortable" style="text-align: left;"
{| class="wikitable sortable" style="text-align: left;"
Line 430: Line 430:
|-
|-
!Mode
!Mode
!Mode name!!UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
!Mode name!! UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
|-
|-
|LssLsss
|LssLsss
|antilocrian ||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major||major||perfect
|antilocrian||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major||major||perfect
|-
|-
|LsssLss
|LsssLss
Line 445: Line 445:
|-
|-
|sLssLss
|sLssLss
|anti-aeolian ||4<nowiki>|</nowiki>2|| align="right" |6
|anti-aeolian||4<nowiki>|</nowiki>2|| align="right" |6
|perfect||minor
|perfect||minor
|major
|major
Line 454: Line 454:
|-
|-
|sLsssLs
|sLsssLs
|antidorian ||3<nowiki>|</nowiki>3|| align="right" |2
|antidorian||3<nowiki>|</nowiki>3|| align="right" |2
|perfect
|perfect
|minor
|minor
Line 463: Line 463:
|-
|-
|ssLssLs
|ssLssLs
|antimixolydian ||2<nowiki>|</nowiki>4|| align="right" |5
|antimixolydian||2<nowiki>|</nowiki>4|| align="right" |5
|perfect
|perfect
|minor||minor
|minor||minor
Line 472: Line 472:
|-
|-
|ssLsssL
|ssLsssL
|anti-ionian ||1<nowiki>|</nowiki>5|| align="right" |1
|anti-ionian||1<nowiki>|</nowiki>5|| align="right" |1
|perfect
|perfect
|minor
|minor
Line 481: Line 481:
|-
|-
|sssLssL
|sssLssL
|antilydian ||0<nowiki>|</nowiki>6|| align="right" |4
|antilydian||0<nowiki>|</nowiki>6|| align="right" |4
|perfect
|perfect
|minor
|minor
Line 490: Line 490:
|}
|}


== Alternate mos tables==
==Alternate mos tables==
{| class="wikitable sortable"
{| class="wikitable sortable"
!Pattern
!Pattern
Line 499: Line 499:
|-
|-
|[[1L 1s]]
|[[1L 1s]]
|2
| 2
|1
|1
|trivial
|trivial
Line 505: Line 505:
|-
|-
|[[1L 1s]]
|[[1L 1s]]
|2
| 2
|1
|1
|monowood
|monowood
Line 511: Line 511:
|-
|-
|[[1L 2s]]
|[[1L 2s]]
|3
| 3
|1
|1
|antrial
|antrial
Line 517: Line 517:
|-
|-
|[[2L 1s]]
|[[2L 1s]]
|3
| 3
|1
|1
|trial
|trial
Line 523: Line 523:
|-
|-
|[[1L 3s]]
|[[1L 3s]]
|4
| 4
|1
|1
|antetric
|antetric
Line 529: Line 529:
|-
|-
|[[2L 2s]]
|[[2L 2s]]
|4
| 4
| 2
|2
|biwood
|biwood
|biwd-
|biwd-
|-
|-
|[[3L 1s]]
|[[3L 1s]]
|4
| 4
|1
|1
|tetric
|tetric
Line 541: Line 541:
|-
|-
|[[1L 4s]]
|[[1L 4s]]
|5
| 5
|1
|1
|pedal
|pedal
Line 547: Line 547:
|-
|-
|[[2L 3s]]
|[[2L 3s]]
|5
| 5
| 1
|1
|pentic
|pentic
|pent-
|pent-
|-
|-
|[[3L 2s]]
|[[3L 2s]]
|5
| 5
|1
|1
|antipentic
|antipentic
Line 559: Line 559:
|-
|-
|[[4L 1s]]
|[[4L 1s]]
|5
| 5
| 1
|1
|manual
|manual
|manu-
|manu-
|-
|-
|[[1L 5s]]
|[[1L 5s]]
|6
| 6
|1
|1
|antimachinoid
|antimachinoid
Line 571: Line 571:
|-
|-
|[[2L 4s]]
|[[2L 4s]]
|6
| 6
|2
|2
|anticitric
|anticitric
Line 577: Line 577:
|-
|-
|[[3L 3s]]
|[[3L 3s]]
|6
| 6
|3
|3
|triwood
|triwood
Line 583: Line 583:
|-
|-
|[[4L 2s]]
|[[4L 2s]]
|6
| 6
|2
|2
|citric
|citric
Line 589: Line 589:
|-
|-
|[[5L 1s]]
|[[5L 1s]]
|6
| 6
|1
|1
| machinoid
|machinoid
|mech-
|mech-
|-
|-
|[[1L 6s]]
|[[1L 6s]]
|7
| 7
|1
|1
|onyx
|onyx
Line 601: Line 601:
|-
|-
|[[2L 5s]]
|[[2L 5s]]
|7
| 7
|1
|1
|antidiatonic
|antidiatonic
Line 607: Line 607:
|-
|-
|[[3L 4s]]
|[[3L 4s]]
|7
| 7
|1
|1
|mosh
|mosh
Line 613: Line 613:
|-
|-
|[[4L 3s]]
|[[4L 3s]]
|7
| 7
|1
|1
|smitonic
|smitonic
Line 619: Line 619:
|-
|-
|[[5L 2s]]
|[[5L 2s]]
|7
| 7
|1
|1
|diatonic
|diatonic
Line 625: Line 625:
|-
|-
|[[6L 1s]]
|[[6L 1s]]
|7
| 7
|1
|1
|arch(a)eotonic
|arch(a)eotonic
Line 631: Line 631:
|-
|-
|[[1L 7s]]
|[[1L 7s]]
|8
| 8
|1
|1
| antipine
|antipine
|apine-
|apine-
|-
|-
|[[2L 6s]]
|[[2L 6s]]
|8
| 8
|2
|2
|antiekic
|antiekic
Line 643: Line 643:
|-
|-
|[[3L 5s]]
|[[3L 5s]]
|8
| 8
|1
|1
|checkertonic
|checkertonic
Line 649: Line 649:
|-
|-
|[[4L 4s]]
|[[4L 4s]]
|8
| 8
|4
|4
|tetrawood; diminished
|tetrawood; diminished
Line 655: Line 655:
|-
|-
|[[5L 3s]]
|[[5L 3s]]
|8
| 8
|1
|1
|oneirotonic
|oneirotonic
Line 661: Line 661:
|-
|-
|[[6L 2s]]
|[[6L 2s]]
|8
| 8
|2
|2
|ekic
|ekic
Line 667: Line 667:
|-
|-
|[[7L 1s]]
|[[7L 1s]]
|8
| 8
|1
|1
|pine
|pine
Line 673: Line 673:
|-
|-
|[[1L 8s]]
|[[1L 8s]]
|9
| 9
|1
|1
|antisubneutralic
|antisubneutralic
Line 679: Line 679:
|-
|-
|[[2L 7s]]
|[[2L 7s]]
|9
| 9
|1
|1
|balzano
|balzano
Line 685: Line 685:
|-
|-
|[[3L 6s]]
|[[3L 6s]]
|9
| 9
|3
|3
|tcherepnin
|tcherepnin
Line 691: Line 691:
|-
|-
|[[4L 5s]]
|[[4L 5s]]
|9
| 9
|1
|1
|gramitonic
|gramitonic
Line 697: Line 697:
|-
|-
|[[5L 4s]]
|[[5L 4s]]
|9
| 9
|1
|1
|semiquartal
|semiquartal
Line 703: Line 703:
|-
|-
|[[6L 3s]]
|[[6L 3s]]
|9
| 9
|3
|3
|hyrulic
|hyrulic
Line 709: Line 709:
|-
|-
|[[7L 2s]]
|[[7L 2s]]
|9
| 9
|1
|1
|superdiatonic
|superdiatonic
Line 715: Line 715:
|-
|-
|[[8L 1s]]
|[[8L 1s]]
|9
| 9
|1
|1
|subneutralic
|subneutralic
Line 721: Line 721:
|-
|-
|[[1L 9s]]
|[[1L 9s]]
|10
| 10
|1
|1
|antisinatonic
|antisinatonic
Line 727: Line 727:
|-
|-
|[[2L 8s]]
|[[2L 8s]]
|10
| 10
|2
|2
|jaric
|jaric
Line 733: Line 733:
|-
|-
|[[3L 7s]]
|[[3L 7s]]
|10
| 10
|1
|1
| sephiroid
|sephiroid
|seph-
|seph-
|-
|-
|[[4L 6s]]
|[[4L 6s]]
|10
| 10
|2
|2
|lime
|lime
Line 745: Line 745:
|-
|-
|[[5L 5s]]
|[[5L 5s]]
|10
| 10
|5
|5
|pentawood
|pentawood
Line 751: Line 751:
|-
|-
|[[6L 4s]]
|[[6L 4s]]
|10
| 10
|2
|2
|lemon
|lemon
Line 757: Line 757:
|-
|-
|[[7L 3s]]
|[[7L 3s]]
|10
| 10
|1
|1
|dicoid /'daɪkɔɪd/
|dicoid /'daɪkɔɪd/
Line 763: Line 763:
|-
|-
|[[8L 2s]]
|[[8L 2s]]
|10
| 10
|2
|2
|taric
|taric
Line 769: Line 769:
|-
|-
|[[9L 1s]]
|[[9L 1s]]
|10
| 10
|1
|1
|sinatonic
|sinatonic
Line 779: Line 779:
! colspan="6" |Generator
! colspan="6" |Generator
!Bright gen.
!Bright gen.
!Dark gen.
! Dark gen.
!L
! L
!s
!s
!L/s
!L/s
Line 806: Line 806:
|654.545
|654.545
|545.455
|545.455
| 6
|6
|5
|5
|1.200
| 1.200
| rowspan="3" |2L 5s range (includes 2L 7s and 7L 2s)
| rowspan="3" |2L 5s range (includes 2L 7s and 7L 2s)
|-
|-
Line 828: Line 828:
|
|
|
|
| 9\16
|9\16
|675.000
| 675.000
|525.000
|525.000
|9
|9
Line 1,006: Line 1,006:
|830.769
|830.769
|369.231
|369.231
| 9
|9
|4
|4
|2.250
| 2.250
| rowspan="3" |3L 4s range (includes 3L 7s and 7L 3s)
| rowspan="3" |3L 4s range (includes 3L 7s and 7L 3s)
|-
|-
Line 1,156: Line 1,156:
|981.818
|981.818
|218.182
|218.182
| 9
|9
|2
|2
|4.500
| 4.500
| rowspan="3" |Range of 4L 1s (includes 5L 1s and 1L 5s)
| rowspan="3" |Range of 4L 1s (includes 5L 1s and 1L 5s)
|-
|-
Line 1,194: Line 1,194:
|0.000
|0.000
|1
|1
| 0
|0
|→ inf
|→ inf
|
|
|}
|}


==Module and template sandbox ==
==Module and template sandbox==


===Mos ancestors and descendants===
===Mos ancestors and descendants===
Line 1,218: Line 1,218:
|-
|-
| rowspan="2" |(x+y)L xs
| rowspan="2" |(x+y)L xs
| (2x+y)L (x+y)s
|(2x+y)L (x+y)s
|-
|-
|(x+y)L (2x+y)s
|(x+y)L (2x+y)s
|}
|}

Revision as of 06:56, 13 October 2023


This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Test area

Expanding the mos intro

Including step patterns

xL ys, also called mosname or alt-mosname, is a moment-of-symmetry scale consisting of x large step(s) and y small step(s), repeating every octave. This scale has a step pattern of step-pattern, or some rotation thereof, and is made using a generator ranging from g1¢ to g2¢, or from d1¢ to d2¢.

5L 2s, also called diatonic, is a moment of symmetry scale consisting of 5 large steps and 2 small steps, repeating every octave. This scale has a step pattern of LLLsLLs, or some rotation thereof, and is made using a generator ranging from 685.714¢ to 720¢, or from 480¢ to 514.286¢.

nxL nys, also called mosname or alt-mosname, is a moment-of-symmetry scale consisting of nx large step(s) and ny small step(s), with a period of x large step(s) and y small step(s) that repeats n times every octave, or every p¢. This scale has a step pattern of step-pattern, or some rotation thereof for every period, and is made using a generator ranging from g1¢ to g2¢, or from d1¢ to d2¢.

3L 6s, also called tcherepnin, is a moment of symmetry scale consisting of 3 large steps and 6 small steps, with a period of 1 large step and 2 small steps that repeats 3 times every octave, or every 400¢. This scale has a step pattern of Lss, or some rotation thereof, for every period, and is made using a generator ranging from 266.667¢ to 400¢, or from 0¢ to 133.333¢.

Including mos descendant names

xL ys, also called mosname or alt-mosname, is a chromatic/enharmonic/subchromatic/nth-descendant of the moment-of-symmetry scale zL ws and consists of x large step(s) and y small step(s), repeating every octave. This scale has a step pattern of step-pattern, or some rotation thereof, and is made using a generator ranging from g1¢ to g2¢, or from d1¢ to d2¢.

5L 7s, also called (hard) diachromatic or p-chromatic, is a chromatic scale of the moment of symmetry scale 5L 2s and consists of 5 large steps and 7 small steps, repeating every octave. This scale has a step pattern of LssLsLsLssLs, or some rotation thereof, and is made using a generator ranging from 700¢ to 720¢, or from 480¢ to 500¢.

Mos degrees template with new code

Template to call module without affecting the current template (fill in arguments as needed):

{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=
|Step Ratio=
|MOS Prefix=
|Show Abbreviations=
|JI Ratios=
}}

Instances of module for testing:

Script error: No such module "MOS_degrees_v2".

Script error: No such module "MOS_degrees_v2".

Script error: No such module "MOS_degrees_v2".

Mos degrees template (version 2)

Scale degrees of 5L 2s
Scale degree Basic 5L 2s

(12edo, L:s = 2:1)

Basic 5L 2s

(12edo, L:s = 2:1)

Steps Cents Steps Cents
Perfect 0-diadegree 0 0 0 0
Minor 1-diadegree 1 100 1 100
Major 1-diadegree 2 200 2 200
Minor 2-diadegree 3 300 3 300
Major 2-diadegree 4 400 4 400
Perfect 3-diadegree 5 500 5 500
Augmented 3-diadegree 6 600 6 600
Diminished 4-diadegree 6 600 6 600
Perfect 4-diadegree 7 700 7 700
Minor 5-diadegree 8 800 8 800
Major 5-diadegree 9 900 9 900
Minor 6-diadegree 10 1000 10 1000
Major 6-diadegree 11 1100 11 1100
Perfect 7-diadegree 12 1200 12 1200
Scale degrees of 5L 2s (with optional columns)
Scale degree Abbrev. On C Basic 5L 2s

(12edo, L:s = 2:1)

Approx. JI ratios
Steps Cents
Perfect 0-diadegree P0md C 0 0 1/1
Minor 1-diadegree m1md Db 1 100
Major 1-diadegree M1md D 2 200
Minor 2-diadegree m2md Eb 3 300
Major 2-diadegree M2md E 4 400
Perfect 3-diadegree P3md F 5 500 4/3
Augmented 3-diadegree A3md F# 6 600
Diminished 4-diadegree d4md Gb 6 600
Perfect 4-diadegree P4md G 7 700 3/2
Minor 5-diadegree m5md Ab 8 800
Major 5-diadegree M5md A 9 900
Minor 6-diadegree m6md Bb 10 1000
Major 6-diadegree M6md B 11 1100
Perfect 7-diadegree P7md C 12 1200 2/1

Step sizes template

User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 4L 3s
Scale degree 11edo (Basic, L:s = 2:1) Approx. JI Ratios
Steps Cents
Perfect 0-smidegree (unison) 0 0 1/1 (exact)
Minor 1-smidegree 1 109.1
Major 1-smidegree 2 218.2
Perfect 2-smidegree 3 327.3
Augmented 2-smidegree 4 436.4
Minor 3-smidegree 4 436.4
Major 3-smidegree 5 545.5
Minor 4-smidegree 6 654.5
Major 4-smidegree 7 763.6
Diminished 5-smidegree 7 763.6
Perfect 5-smidegree 8 872.7
Minor 6-smidegree 9 981.8
Major 6-smidegree 10 1090.9
Perfect 7-smidegree (octave) 11 1200 2/1 (exact)
3L 4s step sizes
Interval Basic 3L 4s

(10edo, L:s = 2:1)

Hard 3L 4s

(13edo, L:s = 3:1)

Soft 3L 4s

(17edo, L:s = 3:2)

Approx. JI ratios
Steps Cents Steps Cents Steps Cents
Large step 2 240¢ 3 276.9¢ 3 211.8¢ Hide column if no ratios given
Small step 1 120¢ 1 92.3¢ 2 141.2¢
Bright generator 3 360¢ 4 369.2¢ 5 355.6¢

Notes:

  • Allow option to show the bright generator, dark generator, or no generator.
  • JI ratios column only shows if there are any ratios to show

Mbox template test

These would be their own templates.

Stub page:

This page is a stub. You can help the Xenharmonic Wiki by expanding it.

Page needs cleanup (with example reason):

This article may require cleanup.

Reason: page contains advanced concepts. You can edit this page to improve it.

Page under construction:

This article is being created or in the process of being rewritten, and is not yet ready for use. You are welcome to help with editing this page.

Math symbols test

Isolated symbols

[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]

Sample text

Pulled from muddle page.

Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.

The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.

Interval and degree tables

The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.

Intervals of 2L 5s for each mode
Mode UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s


Degrees of 2L 5s for each mode
Mode UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss 6|0 0 perfect major major perfect augmented major major perfect
LsssLss 5|1 3 perfect major major perfect perfect major major perfect
sLssLss 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL 0|6 4 perfect minor minor diminished perfect minor minor perfect

Note: don't merge cells on a table with sorting.

Intervals of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss antilocrian 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss antiphrygian 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss anti-aeolian 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs antidorian 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs antimixolydian 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL anti-ionian 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL antilydian 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s
Degrees of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss antilocrian 6|0 0 perfect major major perfect augmented major major perfect
LsssLss antiphrygian 5|1 3 perfect major major perfect perfect major major perfect
sLssLss anti-aeolian 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs antidorian 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs antimixolydian 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL anti-ionian 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL antilydian 0|6 4 perfect minor minor diminished perfect minor minor perfect

Alternate mos tables

Pattern Number of notes Number of periods Name Prefix
1L 1s 2 1 trivial triv-
1L 1s 2 1 monowood monowd-
1L 2s 3 1 antrial atri-
2L 1s 3 1 trial tri-
1L 3s 4 1 antetric atetra-
2L 2s 4 2 biwood biwd-
3L 1s 4 1 tetric tetra-
1L 4s 5 1 pedal ped-
2L 3s 5 1 pentic pent-
3L 2s 5 1 antipentic apent-
4L 1s 5 1 manual manu-
1L 5s 6 1 antimachinoid amech-
2L 4s 6 2 anticitric acitro-
3L 3s 6 3 triwood triwd-
4L 2s 6 2 citric citro-
5L 1s 6 1 machinoid mech-
1L 6s 7 1 onyx on-
2L 5s 7 1 antidiatonic pel-
3L 4s 7 1 mosh mosh-
4L 3s 7 1 smitonic smi-
5L 2s 7 1 diatonic none
6L 1s 7 1 arch(a)eotonic arch-
1L 7s 8 1 antipine apine-
2L 6s 8 2 antiekic anek-
3L 5s 8 1 checkertonic check-
4L 4s 8 4 tetrawood; diminished tetwd-
5L 3s 8 1 oneirotonic neiro-
6L 2s 8 2 ekic ek-
7L 1s 8 1 pine pine-
1L 8s 9 1 antisubneutralic ablu-
2L 7s 9 1 balzano bal- /bæl/
3L 6s 9 3 tcherepnin cher-
4L 5s 9 1 gramitonic gram-
5L 4s 9 1 semiquartal cthon-
6L 3s 9 3 hyrulic hyru-
7L 2s 9 1 superdiatonic arm-
8L 1s 9 1 subneutralic blu-
1L 9s 10 1 antisinatonic asina-
2L 8s 10 2 jaric jara-
3L 7s 10 1 sephiroid seph-
4L 6s 10 2 lime lime-
5L 5s 10 5 pentawood penwd-
6L 4s 10 2 lemon lem-
7L 3s 10 1 dicoid /'daɪkɔɪd/ dico-
8L 2s 10 2 taric tara-
9L 1s 10 1 sinatonic sina-

Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)

Generator Bright gen. Dark gen. L s L/s Ranges of mosses
1\2 600.000 600.000 1 1 1.000
6\11 654.545 545.455 6 5 1.200 2L 5s range (includes 2L 7s and 7L 2s)
5\9 666.667 533.333 5 4 1.250
9\16 675.000 525.000 9 7 1.286
4\7 685.714 514.286 4 3 1.333 Basic 2L 3s
11\19 694.737 505.263 11 8 1.375 5L 2s range (includes 7L 5s and 5L 7s)
7\12 700.000 500.000 7 5 1.400
10\17 705.882 494.118 10 7 1.429
3\5 720.000 480.000 3 2 1.500 Basic 2L 1s
11\18 733.333 466.667 11 7 1.571 5L 3s range
8\13 738.462 461.538 8 5 1.600
13\21 742.857 457.143 13 8 1.625
5\8 750.000 450.000 5 3 1.667 Basic 3L 2s
12\19 757.895 442.105 12 7 1.714 3L 5s range
7\11 763.636 436.364 7 4 1.750
9\14 771.429 428.571 9 5 1.800
2\3 800.000 400.000 2 1 2.000 Basic 1L 1s (dividing line between 2L 1s and 1L 2s)
9\13 830.769 369.231 9 4 2.250 3L 4s range (includes 3L 7s and 7L 3s)
7\10 840.000 360.000 7 3 2.333
12\17 847.059 352.941 12 5 2.400
5\7 857.143 342.857 5 2 2.500 Basic 3L 1s
13\18 866.667 333.333 13 5 2.600 4L 3s range
8\11 872.727 327.273 8 3 2.667
11\15 880.000 320.000 11 4 2.750
3\4 900.000 300.000 3 1 3.000 Basic 1L 2s
10\13 923.077 276.923 10 3 3.333 Range of 1L 4s (includes 4L 5s and 5L 4s)
7\9 933.333 266.667 7 2 3.500
11\14 942.857 257.143 11 3 3.667
4\5 960.000 240.000 4 1 4.000 Basic 1L 4s
9\11 981.818 218.182 9 2 4.500 Range of 4L 1s (includes 5L 1s and 1L 5s)
5\6 1000.000 200.000 5 1 5.000
6\7 1028.571 171.429 6 1 6.000
1\1 1200.000 0.000 1 0 → inf

Module and template sandbox

Mos ancestors and descendants

2nd ancestor 1st ancestor Mos 1st descendants 2nd descendants
uL vs zL ws xL ys xL (x+y)s xL (2x+y)s
(2x+y)L xs
(x+y)L xs (2x+y)L (x+y)s
(x+y)L (2x+y)s