User:Ganaram inukshuk/Sandbox: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
No edit summary
Line 56: Line 56:
|MOS Prefix={{{MOS Prefix|}}}
|MOS Prefix={{{MOS Prefix|}}}
|Show Abbreviations=1
|Show Abbreviations=1
|Number of Alterations=0
|JI Ratios=P4md: 3/2; P3md: 4/3
|JI Ratios=P4md: 3/2; P3md: 4/3
}}
}}
Line 71: Line 72:
|+Scale degrees of 5L 2s
|+Scale degrees of 5L 2s
! rowspan="2" |Scale degree
! rowspan="2" |Scale degree
! colspan="2" |Basic 5L 2s
! colspan="2" | Basic 5L 2s
(12edo, L:s = 2:1)
(12edo, L:s = 2:1)
! colspan="2" |Basic 5L 2s
! colspan="2" | Basic 5L 2s
(12edo, L:s = 2:1)
(12edo, L:s = 2:1)
|-
|-
! Steps
!Steps
!Cents
!Cents
!Steps
!Steps
Line 94: Line 95:
|-
|-
|Major 1-diadegree
|Major 1-diadegree
|2
| 2
| 200
|200
|2
|2
|200
|200
Line 106: Line 107:
|-
|-
|Major 2-diadegree
|Major 2-diadegree
| 4
|4
|400
|400
| 4
|4
|400
|400
|-
|-
|'''Perfect 3-diadegree'''
|'''Perfect 3-diadegree'''
|5
|5
|500
| 500
|5
|5
|500
|500
Line 148: Line 149:
|-
|-
|Minor 6-diadegree
|Minor 6-diadegree
|10
| 1000
|10
|10
|1000
|1000
|10
| 1000
|-
|-
|Major 6-diadegree
|Major 6-diadegree
Line 168: Line 169:
|+Scale degrees of 5L 2s (with optional columns)
|+Scale degrees of 5L 2s (with optional columns)
! rowspan="2" |Scale degree
! rowspan="2" |Scale degree
! rowspan="2" |Abbrev.
! rowspan="2" | Abbrev.
! rowspan="2" |On C
! rowspan="2" | On C
! colspan="2" |Basic 5L 2s
! colspan="2" | Basic 5L 2s
(12edo, L:s = 2:1)
(12edo, L:s = 2:1)
! rowspan="2" |Approx. JI ratios
! rowspan="2" |Approx. JI ratios
Line 185: Line 186:
|-
|-
|Minor 1-diadegree
|Minor 1-diadegree
| m1md
|m1md
|Db
|Db
|1
|1
Line 215: Line 216:
|P3md
|P3md
|F
|F
|5
| 5
|500
|500
|4/3
|4/3
Line 226: Line 227:
|
|
|-
|-
| Diminished 4-diadegree
|Diminished 4-diadegree
|d4md
|d4md
|Gb
|Gb
| 6
| 6
| 600
|600
|
|
|-
|-
Line 264: Line 265:
|M6md
|M6md
|B
|B
|11
| 11
|1100
|1100
|
|
Line 280: Line 281:
|+3L 4s step sizes
|+3L 4s step sizes
! rowspan="2" |Interval
! rowspan="2" |Interval
! colspan="2" |Basic 3L 4s
! colspan="2" | Basic 3L 4s
(10edo, L:s = 2:1)
(10edo, L:s = 2:1)
! colspan="2" |Hard 3L 4s
! colspan="2" |Hard 3L 4s
Line 299: Line 300:
|240¢
|240¢
|3
|3
|276.9¢
| 276.9¢
|3
|3
|211.8¢
|211.8¢
Line 315: Line 316:
|Bright generator
|Bright generator
|3
|3
| 360¢
|360¢
|4
|4
|369.2¢
|369.2¢
Line 325: Line 326:


*Allow option to show the bright generator, dark generator, or no generator.
*Allow option to show the bright generator, dark generator, or no generator.
* JI ratios column only shows if there are any ratios to show
*JI ratios column only shows if there are any ratios to show


===Mbox template test===
===Mbox template test ===
These would be their own templates.
These would be their own templates.


Line 358: Line 359:
|+<!-- caption -->Intervals of 2L 5s for each mode
|+<!-- caption -->Intervals of 2L 5s for each mode
|-
|-
! Mode!!UDP!! align="right" |Rotational order!! align="right" |mosunison !!1-mosstep!! 2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!!6-mosstep!!mosoctave
!Mode!!UDP!! align="right" |Rotational order!! align="right" |mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!! 6-mosstep!!mosoctave
|-
|-
| LssLsss|| 6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s||L+2s||2L+2s ||2L+3s||2L+4s||2L+5s
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|-
|-
|LsssLss||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" | 0||L||L+s||L+2s || L+3s ||2L+3s||2L+4s||2L+5s
|LsssLss ||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|sLssLss ||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLsssLs||3<nowiki>|</nowiki>3|| align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s ||2L+4s||2L+5s
|sLsssLs ||3<nowiki>|</nowiki>3|| align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLssLs||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s ||L+3s||L+4s||2L+4s||2L+5s
|ssLssLs ||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1|| align="right" |0||s||2s|| L+2s||L+3s||L+4s|| L+5s||2L+5s
|ssLsssL ||1<nowiki>|</nowiki>5|| align="right" |1|| align="right" |0||s||2s||L+2s||L+3s||L+4s||L+5s||2L+5s
|-
|-
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s|| 2L+5s
|sssLssL ||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s ||3s||L+3s||L+4s||L+5s||2L+5s
|}
|}


Line 379: Line 380:
|+Degrees of 2L 5s for each mode
|+Degrees of 2L 5s for each mode
|-
|-
!Mode!!UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
! Mode!!UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
|-
|-
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0||perfect ||major||major||perfect||augmented||major||major||perfect
|LssLsss ||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major||major||perfect
|-
|-
|LsssLss||5<nowiki>|</nowiki>1|| align="right" |3|| perfect||major|| major||perfect ||perfect||major||major||perfect
|LsssLss ||5<nowiki>|</nowiki>1|| align="right" |3||perfect ||major||major||perfect||perfect||major||major||perfect
|-
|-
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6||perfect||minor||major||perfect||perfect||major||major||perfect
|sLssLss ||4<nowiki>|</nowiki>2|| align="right" |6||perfect||minor||major||perfect||perfect||major||major||perfect
|-
|-
|sLsssLs||3<nowiki>|</nowiki>3|| align="right" |2||perfect ||minor||major||perfect||perfect||minor||major||perfect
|sLsssLs ||3<nowiki>|</nowiki>3|| align="right" |2||perfect||minor||major||perfect||perfect||minor||major||perfect
|-
|-
|ssLssLs||2<nowiki>|</nowiki>4|| align="right" |5||perfect||minor||minor||perfect||perfect||minor||major||perfect
|ssLssLs ||2<nowiki>|</nowiki>4|| align="right" |5||perfect||minor||minor||perfect||perfect||minor||major||perfect
|-
|-
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1||perfect ||minor||minor||perfect||perfect||minor||minor||perfect
|ssLsssL ||1<nowiki>|</nowiki>5|| align="right" |1||perfect||minor||minor||perfect||perfect||minor||minor||perfect
|-
|-
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4||perfect ||minor||minor||diminished||perfect||minor||minor||perfect
|sssLssL ||0<nowiki>|</nowiki>6|| align="right" |4||perfect||minor||minor||diminished||perfect||minor||minor ||perfect
|}
|}
Note: don't merge cells on a table with sorting.
Note: don't merge cells on a table with sorting.
Line 403: Line 404:
|-
|-
|LssLsss
|LssLsss
|antilocrian||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s ||L+2s||2L+2s|| 2L+3s||2L+4s||2L+5s
|antilocrian ||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" | 0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|-
|-
|LsssLss
|LsssLss
|antiphrygian||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|antiphrygian ||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLssLss
|sLssLss
|anti-aeolian||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|anti-aeolian ||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLsssLs
|sLsssLs
|antidorian|| 3<nowiki>|</nowiki>3 || align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s ||2L+4s||2L+5s
|antidorian||3<nowiki>|</nowiki>3|| align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLssLs
|ssLssLs
|antimixolydian||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|antimixolydian ||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLsssL
|ssLsssL
|anti-ionian||1<nowiki>|</nowiki>5 || align="right" | 1|| align="right" |0||s||2s||L+2s||L+3s||L+4s||L+5s||2L+5s
|anti-ionian||1<nowiki>|</nowiki>5|| align="right" |1|| align="right" |0||s||2s||L+2s||L+3s||L+4s||L+5s||2L+5s
|-
|-
|sssLssL
|sssLssL
|antilydian||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s||2L+5s
|antilydian ||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s||2L+5s
|}
|}
{| class="wikitable sortable" style="text-align: left;"
{| class="wikitable sortable" style="text-align: left;"
Line 427: Line 428:
|-
|-
!Mode
!Mode
!Mode name!! UDP!! align="right" |Rotational order!!0-mosdegree !!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
!Mode name!!UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
|-
|-
|LssLsss
|LssLsss
|antilocrian||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented|| major||major||perfect
|antilocrian ||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major||major||perfect
|-
|-
|LsssLss
|LsssLss
|antiphrygian || 5<nowiki>|</nowiki>1|| align="right" |3
|antiphrygian||5<nowiki>|</nowiki>1|| align="right" |3
|perfect
|perfect
|major
|major
|major
|major
| perfect||perfect
|perfect||perfect
|major
|major
|major||perfect
|major||perfect
|-
|-
|sLssLss
|sLssLss
|anti-aeolian||4<nowiki>|</nowiki>2|| align="right" |6
|anti-aeolian ||4<nowiki>|</nowiki>2|| align="right" |6
|perfect||minor
|perfect||minor
|major
|major
Line 451: Line 452:
|-
|-
|sLsssLs
|sLsssLs
|antidorian||3<nowiki>|</nowiki>3|| align="right" |2
|antidorian ||3<nowiki>|</nowiki>3|| align="right" |2
|perfect
|perfect
| minor
|minor
|major
|major
|perfect
|perfect
Line 460: Line 461:
|-
|-
|ssLssLs
|ssLssLs
|antimixolydian||2<nowiki>|</nowiki>4|| align="right" |5
|antimixolydian ||2<nowiki>|</nowiki>4|| align="right" |5
|perfect
|perfect
|minor||minor
|minor||minor
Line 469: Line 470:
|-
|-
|ssLsssL
|ssLsssL
|anti-ionian||1<nowiki>|</nowiki>5|| align="right" |1
|anti-ionian ||1<nowiki>|</nowiki>5|| align="right" |1
|perfect
|perfect
|minor
|minor
Line 478: Line 479:
|-
|-
|sssLssL
|sssLssL
|antilydian||0<nowiki>|</nowiki>6|| align="right" |4
|antilydian ||0<nowiki>|</nowiki>6|| align="right" |4
|perfect
|perfect
|minor
|minor
Line 487: Line 488:
|}
|}


==Alternate mos tables==
== Alternate mos tables==
{| class="wikitable sortable"
{| class="wikitable sortable"
!Pattern
!Pattern
Line 521: Line 522:
|[[1L 3s]]
|[[1L 3s]]
|4
|4
| 1
|1
|antetric
|antetric
|atetra-
|atetra-
Line 527: Line 528:
|[[2L 2s]]
|[[2L 2s]]
|4
|4
|2
| 2
|biwood
|biwood
|biwd-
|biwd-
Line 545: Line 546:
|[[2L 3s]]
|[[2L 3s]]
|5
|5
|1
| 1
|pentic
|pentic
|pent-
|pent-
Line 557: Line 558:
|[[4L 1s]]
|[[4L 1s]]
|5
|5
|1
| 1
|manual
|manual
|manu-
|manu-
Line 588: Line 589:
|6
|6
|1
|1
|machinoid
| machinoid
|mech-
|mech-
|-
|-
Line 601: Line 602:
|1
|1
|antidiatonic
|antidiatonic
| pel-
|pel-
|-
|-
|[[3L 4s]]
|[[3L 4s]]
Line 630: Line 631:
|8
|8
|1
|1
|antipine
| antipine
|apine-
|apine-
|-
|-
Line 643: Line 644:
|1
|1
|checkertonic
|checkertonic
| check-
|check-
|-
|-
|[[4L 4s]]
|[[4L 4s]]
Line 703: Line 704:
|3
|3
|hyrulic
|hyrulic
| hyru-
|hyru-
|-
|-
|[[7L 2s]]
|[[7L 2s]]
|9
|9
|1
|1
| superdiatonic
|superdiatonic
|arm-
|arm-
|-
|-
Line 714: Line 715:
|9
|9
|1
|1
| subneutralic
|subneutralic
|blu-
|blu-
|-
|-
Line 732: Line 733:
|10
|10
|1
|1
|sephiroid
| sephiroid
|seph-
|seph-
|-
|-
Line 803: Line 804:
|654.545
|654.545
|545.455
|545.455
|6
| 6
|5
|5
|1.200
|1.200
Line 825: Line 826:
|
|
|
|
|9\16
| 9\16
| 675.000
|675.000
|525.000
|525.000
| 9
|9
| 7
|7
|1.286
|1.286
|-
|-
Line 852: Line 853:
|11\19
|11\19
|694.737
|694.737
| 505.263
|505.263
|11
|11
|8
|8
Line 866: Line 867:
|700.000
|700.000
|500.000
|500.000
| 7
|7
|5
|5
|1.400
|1.400
Line 926: Line 927:
|
|
|13\21
|13\21
| 742.857
|742.857
|457.143
|457.143
|13
|13
| 8
|8
| 1.625
|1.625
|-
|-
|
|
Line 1,003: Line 1,004:
|830.769
|830.769
|369.231
|369.231
|9
| 9
|4
|4
|2.250
|2.250
Line 1,014: Line 1,015:
|7\10
|7\10
|
|
| 840.000
|840.000
|360.000
|360.000
|7
|7
Line 1,056: Line 1,057:
|5
|5
|2.600
|2.600
| rowspan="3" | 4L 3s range
| rowspan="3" |4L 3s range
|-
|-
|
|
Line 1,076: Line 1,077:
|
|
|11\15
|11\15
| 880.000
|880.000
| 320.000
|320.000
|11
|11
| 4
|4
| 2.750
|2.750
|-
|-
|
|
Line 1,153: Line 1,154:
|981.818
|981.818
|218.182
|218.182
|9
| 9
|2
|2
|4.500
|4.500
Line 1,191: Line 1,192:
|0.000
|0.000
|1
|1
|0
| 0
|→ inf
|→ inf
|
|
|}
|}


==Module and template sandbox==
==Module and template sandbox ==


===Mos ancestors and descendants===
===Mos ancestors and descendants===
Line 1,204: Line 1,205:
!Mos
!Mos
!1st descendants
!1st descendants
! 2nd descendants
!2nd descendants
|-
|-
| rowspan="4" |uL vs
| rowspan="4" |uL vs
Line 1,215: Line 1,216:
|-
|-
| rowspan="2" |(x+y)L xs
| rowspan="2" |(x+y)L xs
|(2x+y)L (x+y)s
| (2x+y)L (x+y)s
|-
|-
|(x+y)L (2x+y)s
|(x+y)L (2x+y)s
|}
|}

Revision as of 06:01, 13 October 2023


This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Test area

Expanding the mos intro

Including step patterns

xL ys, also called mosname or alt-mosname, is a moment-of-symmetry scale consisting of x large step(s) and y small step(s), repeating every octave. This scale has a step pattern of step-pattern, or some rotation thereof, and is made using a generator ranging from g1¢ to g2¢, or from d1¢ to d2¢.

5L 2s, also called diatonic, is a moment of symmetry scale consisting of 5 large steps and 2 small steps, repeating every octave. This scale has a step pattern of LLLsLLs, or some rotation thereof, and is made using a generator ranging from 685.714¢ to 720¢, or from 480¢ to 514.286¢.

nxL nys, also called mosname or alt-mosname, is a moment-of-symmetry scale consisting of nx large step(s) and ny small step(s), with a period of x large step(s) and y small step(s) that repeats n times every octave, or every p¢. This scale has a step pattern of step-pattern, or some rotation thereof for every period, and is made using a generator ranging from g1¢ to g2¢, or from d1¢ to d2¢.

3L 6s, also called tcherepnin, is a moment of symmetry scale consisting of 3 large steps and 6 small steps, with a period of 1 large step and 2 small steps that repeats 3 times every octave, or every 400¢. This scale has a step pattern of Lss, or some rotation thereof, for every period, and is made using a generator ranging from 266.667¢ to 400¢, or from 0¢ to 133.333¢.

Including mos descendant names

xL ys, also called mosname or alt-mosname, is a chromatic/enharmonic/subchromatic/nth-descendant of the moment-of-symmetry scale zL ws and consists of x large step(s) and y small step(s), repeating every octave. This scale has a step pattern of step-pattern, or some rotation thereof, and is made using a generator ranging from g1¢ to g2¢, or from d1¢ to d2¢.

5L 7s, also called (hard) diachromatic or p-chromatic, is a chromatic scale of the moment of symmetry scale 5L 2s and consists of 5 large steps and 7 small steps, repeating every octave. This scale has a step pattern of LssLsLsLssLs, or some rotation thereof, and is made using a generator ranging from 700¢ to 720¢, or from 480¢ to 500¢.

Mos degrees template with new code

Template to call module without affecting the current template (fill in arguments as needed):

{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=
|Step Ratio=
|MOS Prefix=
|Show Abbreviations=
|JI Ratios=
}}

Instances of module for testing:

Script error: No such module "MOS_degrees_v2".

Script error: No such module "MOS_degrees_v2".

Script error: No such module "MOS_degrees_v2".

Mos degrees template (version 2)

Scale degrees of 5L 2s
Scale degree Basic 5L 2s

(12edo, L:s = 2:1)

Basic 5L 2s

(12edo, L:s = 2:1)

Steps Cents Steps Cents
Perfect 0-diadegree 0 0 0 0
Minor 1-diadegree 1 100 1 100
Major 1-diadegree 2 200 2 200
Minor 2-diadegree 3 300 3 300
Major 2-diadegree 4 400 4 400
Perfect 3-diadegree 5 500 5 500
Augmented 3-diadegree 6 600 6 600
Diminished 4-diadegree 6 600 6 600
Perfect 4-diadegree 7 700 7 700
Minor 5-diadegree 8 800 8 800
Major 5-diadegree 9 900 9 900
Minor 6-diadegree 10 1000 10 1000
Major 6-diadegree 11 1100 11 1100
Perfect 7-diadegree 12 1200 12 1200
Scale degrees of 5L 2s (with optional columns)
Scale degree Abbrev. On C Basic 5L 2s

(12edo, L:s = 2:1)

Approx. JI ratios
Steps Cents
Perfect 0-diadegree P0md C 0 0 1/1
Minor 1-diadegree m1md Db 1 100
Major 1-diadegree M1md D 2 200
Minor 2-diadegree m2md Eb 3 300
Major 2-diadegree M2md E 4 400
Perfect 3-diadegree P3md F 5 500 4/3
Augmented 3-diadegree A3md F# 6 600
Diminished 4-diadegree d4md Gb 6 600
Perfect 4-diadegree P4md G 7 700 3/2
Minor 5-diadegree m5md Ab 8 800
Major 5-diadegree M5md A 9 900
Minor 6-diadegree m6md Bb 10 1000
Major 6-diadegree M6md B 11 1100
Perfect 7-diadegree P7md C 12 1200 2/1

Step sizes template

User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 4L 3s
Scale degree 11edo (Basic, L:s = 2:1) Approx. JI Ratios
Steps Cents
Perfect 0-smidegree (unison) 0 0 1/1 (exact)
Minor 1-smidegree 1 109.1
Major 1-smidegree 2 218.2
Perfect 2-smidegree 3 327.3
Augmented 2-smidegree 4 436.4
Minor 3-smidegree 4 436.4
Major 3-smidegree 5 545.5
Minor 4-smidegree 6 654.5
Major 4-smidegree 7 763.6
Diminished 5-smidegree 7 763.6
Perfect 5-smidegree 8 872.7
Minor 6-smidegree 9 981.8
Major 6-smidegree 10 1090.9
Perfect 7-smidegree (octave) 11 1200 2/1 (exact)
3L 4s step sizes
Interval Basic 3L 4s

(10edo, L:s = 2:1)

Hard 3L 4s

(13edo, L:s = 3:1)

Soft 3L 4s

(17edo, L:s = 3:2)

Approx. JI ratios
Steps Cents Steps Cents Steps Cents
Large step 2 240¢ 3 276.9¢ 3 211.8¢ Hide column if no ratios given
Small step 1 120¢ 1 92.3¢ 2 141.2¢
Bright generator 3 360¢ 4 369.2¢ 5 355.6¢

Notes:

  • Allow option to show the bright generator, dark generator, or no generator.
  • JI ratios column only shows if there are any ratios to show

Mbox template test

These would be their own templates.

Stub page:

This page is a stub. You can help the Xenharmonic Wiki by expanding it.

Page needs cleanup (with example reason):

This article may require cleanup.

Reason: page contains advanced concepts. You can edit this page to improve it.

Page under construction:

This article is being created or in the process of being rewritten, and is not yet ready for use. You are welcome to help with editing this page.

Math symbols test

Isolated symbols

[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]

Sample text

Pulled from muddle page.

Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.

The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.

Interval and degree tables

The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.

Intervals of 2L 5s for each mode
Mode UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s


Degrees of 2L 5s for each mode
Mode UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss 6|0 0 perfect major major perfect augmented major major perfect
LsssLss 5|1 3 perfect major major perfect perfect major major perfect
sLssLss 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL 0|6 4 perfect minor minor diminished perfect minor minor perfect

Note: don't merge cells on a table with sorting.

Intervals of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss antilocrian 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss antiphrygian 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss anti-aeolian 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs antidorian 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs antimixolydian 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL anti-ionian 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL antilydian 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s
Degrees of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss antilocrian 6|0 0 perfect major major perfect augmented major major perfect
LsssLss antiphrygian 5|1 3 perfect major major perfect perfect major major perfect
sLssLss anti-aeolian 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs antidorian 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs antimixolydian 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL anti-ionian 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL antilydian 0|6 4 perfect minor minor diminished perfect minor minor perfect

Alternate mos tables

Pattern Number of notes Number of periods Name Prefix
1L 1s 2 1 trivial triv-
1L 1s 2 1 monowood monowd-
1L 2s 3 1 antrial atri-
2L 1s 3 1 trial tri-
1L 3s 4 1 antetric atetra-
2L 2s 4 2 biwood biwd-
3L 1s 4 1 tetric tetra-
1L 4s 5 1 pedal ped-
2L 3s 5 1 pentic pent-
3L 2s 5 1 antipentic apent-
4L 1s 5 1 manual manu-
1L 5s 6 1 antimachinoid amech-
2L 4s 6 2 anticitric acitro-
3L 3s 6 3 triwood triwd-
4L 2s 6 2 citric citro-
5L 1s 6 1 machinoid mech-
1L 6s 7 1 onyx on-
2L 5s 7 1 antidiatonic pel-
3L 4s 7 1 mosh mosh-
4L 3s 7 1 smitonic smi-
5L 2s 7 1 diatonic none
6L 1s 7 1 arch(a)eotonic arch-
1L 7s 8 1 antipine apine-
2L 6s 8 2 antiekic anek-
3L 5s 8 1 checkertonic check-
4L 4s 8 4 tetrawood; diminished tetwd-
5L 3s 8 1 oneirotonic neiro-
6L 2s 8 2 ekic ek-
7L 1s 8 1 pine pine-
1L 8s 9 1 antisubneutralic ablu-
2L 7s 9 1 balzano bal- /bæl/
3L 6s 9 3 tcherepnin cher-
4L 5s 9 1 gramitonic gram-
5L 4s 9 1 semiquartal cthon-
6L 3s 9 3 hyrulic hyru-
7L 2s 9 1 superdiatonic arm-
8L 1s 9 1 subneutralic blu-
1L 9s 10 1 antisinatonic asina-
2L 8s 10 2 jaric jara-
3L 7s 10 1 sephiroid seph-
4L 6s 10 2 lime lime-
5L 5s 10 5 pentawood penwd-
6L 4s 10 2 lemon lem-
7L 3s 10 1 dicoid /'daɪkɔɪd/ dico-
8L 2s 10 2 taric tara-
9L 1s 10 1 sinatonic sina-

Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)

Generator Bright gen. Dark gen. L s L/s Ranges of mosses
1\2 600.000 600.000 1 1 1.000
6\11 654.545 545.455 6 5 1.200 2L 5s range (includes 2L 7s and 7L 2s)
5\9 666.667 533.333 5 4 1.250
9\16 675.000 525.000 9 7 1.286
4\7 685.714 514.286 4 3 1.333 Basic 2L 3s
11\19 694.737 505.263 11 8 1.375 5L 2s range (includes 7L 5s and 5L 7s)
7\12 700.000 500.000 7 5 1.400
10\17 705.882 494.118 10 7 1.429
3\5 720.000 480.000 3 2 1.500 Basic 2L 1s
11\18 733.333 466.667 11 7 1.571 5L 3s range
8\13 738.462 461.538 8 5 1.600
13\21 742.857 457.143 13 8 1.625
5\8 750.000 450.000 5 3 1.667 Basic 3L 2s
12\19 757.895 442.105 12 7 1.714 3L 5s range
7\11 763.636 436.364 7 4 1.750
9\14 771.429 428.571 9 5 1.800
2\3 800.000 400.000 2 1 2.000 Basic 1L 1s (dividing line between 2L 1s and 1L 2s)
9\13 830.769 369.231 9 4 2.250 3L 4s range (includes 3L 7s and 7L 3s)
7\10 840.000 360.000 7 3 2.333
12\17 847.059 352.941 12 5 2.400
5\7 857.143 342.857 5 2 2.500 Basic 3L 1s
13\18 866.667 333.333 13 5 2.600 4L 3s range
8\11 872.727 327.273 8 3 2.667
11\15 880.000 320.000 11 4 2.750
3\4 900.000 300.000 3 1 3.000 Basic 1L 2s
10\13 923.077 276.923 10 3 3.333 Range of 1L 4s (includes 4L 5s and 5L 4s)
7\9 933.333 266.667 7 2 3.500
11\14 942.857 257.143 11 3 3.667
4\5 960.000 240.000 4 1 4.000 Basic 1L 4s
9\11 981.818 218.182 9 2 4.500 Range of 4L 1s (includes 5L 1s and 1L 5s)
5\6 1000.000 200.000 5 1 5.000
6\7 1028.571 171.429 6 1 6.000
1\1 1200.000 0.000 1 0 → inf

Module and template sandbox

Mos ancestors and descendants

2nd ancestor 1st ancestor Mos 1st descendants 2nd descendants
uL vs zL ws xL ys xL (x+y)s xL (2x+y)s
(2x+y)L xs
(x+y)L xs (2x+y)L (x+y)s
(x+y)L (2x+y)s