190edo: Difference between revisions
m Skip disambiguation |
m changed EDO intro to ED intro |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
190edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with a flat tendency, as [[harmonic]]s 3 through 13 are all tuned flat. | 190edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with a flat tendency, as [[harmonic]]s 3 through 13 are all tuned flat. | ||
190edo is interesting because of the utility of its approximations; it [[tempering out|tempers out]] [[1029/1024]], [[4375/4374]], [[385/384]], [[441/440]], [[3025/3024]], and [[9801/9800]]. It provides the [[optimal patent val]] for both the 7- and 11-limit versions of [[unidec]], the {{nowrap|72 & 118}} temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament [[portent]], which tempers out 385/384 and 441/440, and [[gamelan]], the rank-3 7-limit temperament which tempers out 1029/1024, as well as [[slendric]], the 2.3.7 subgroup temperament featured in the [[#Music]] section. In the 13-limit, 190et tempers out [[625/624]], [[729/728]], [[847/845]], [[1001/1000]] and [[1575/1573]], and provides the optimal patent val for the [[ekadash]] temperament and the rank-3 [[portentous]] temperament. | |||
The 190g [[val]] shows us a smooth path to the even higher limits. This extension tempers out [[289/288]], [[561/560]], [[595/594]] in the 17-limit; [[343/342]], [[476/475]], [[495/494]] in the 19-limit; and [[391/390]], [[529/528]] in the 23-limit. | The 190g [[val]] shows us a smooth path to the even higher limits. This extension tempers out [[289/288]], [[561/560]], [[595/594]] in the 17-limit; [[343/342]], [[476/475]], [[495/494]] in the 19-limit; and [[391/390]], [[529/528]] in the 23-limit. | ||
Line 17: | Line 17: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
Line 27: | Line 28: | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{ | | {{Monzo| -301 190 }} | ||
| {{ | | {{Mapping| 190 301 }} | ||
| +0.285 | | +0.285 | ||
| 0.285 | | 0.285 | ||
Line 35: | Line 36: | ||
| 2.3.5 | | 2.3.5 | ||
| 2109375/2097152, {{monzo| -7 22 -12 }} | | 2109375/2097152, {{monzo| -7 22 -12 }} | ||
| {{ | | {{Mapping| 190 301 441 }} | ||
| +0.341 | | +0.341 | ||
| 0.246 | | 0.246 | ||
Line 42: | Line 43: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 1029/1024, 4375/4374, 235298/234375 | | 1029/1024, 4375/4374, 235298/234375 | ||
| {{ | | {{Mapping| 190 301 441 533 }} | ||
| +0.479 | | +0.479 | ||
| 0.321 | | 0.321 | ||
Line 49: | Line 50: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 385/384, 441/440, 4375/4374, 234375/234256 | | 385/384, 441/440, 4375/4374, 234375/234256 | ||
| {{ | | {{Mapping| 190 301 441 533 657 }} | ||
| +0.490 | | +0.490 | ||
| 0.288 | | 0.288 | ||
Line 56: | Line 57: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 385/384, 441/440, 625/624, 729/728, 847/845 | | 385/384, 441/440, 625/624, 729/728, 847/845 | ||
| {{ | | {{Mapping| 190 301 441 533 657 703 }} | ||
| +0.432 | | +0.432 | ||
| 0.293 | | 0.293 | ||
Line 63: | Line 64: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 289/288, 385/384, 441/440, 561/560, 625/624, 847/845 | | 289/288, 385/384, 441/440, 561/560, 625/624, 847/845 | ||
| {{ | | {{Mapping| 190 301 441 533 657 703 776 }} (190g) | ||
| +0.507 | | +0.507 | ||
| 0.327 | | 0.327 | ||
Line 70: | Line 71: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 289/288, 343/342, 385/384, 441/440, 476/475, 495/494, 847/845 | | 289/288, 343/342, 385/384, 441/440, 476/475, 495/494, 847/845 | ||
| {{ | | {{Mapping| 190 301 441 533 657 703 776 807 }} (190g) | ||
| +0.463 | | +0.463 | ||
| 0.327 | | 0.327 | ||
Line 77: | Line 78: | ||
| 2.3.5.7.11.13.17.19.23 | | 2.3.5.7.11.13.17.19.23 | ||
| 289/288, 343/342, 385/384, 391/390, 441/440, 476/475, 495/494, 529/528 | | 289/288, 343/342, 385/384, 391/390, 441/440, 476/475, 495/494, 529/528 | ||
| {{ | | {{Mapping| 190 301 441 533 657 703 776 807 859 }} (190g) | ||
| +0.486 | | +0.486 | ||
| 0.315 | | 0.315 | ||
Line 87: | Line 88: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
|- | |||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br>ratio* | ||
! | ! Temperament | ||
|- | |- | ||
| 1 | | 1 | ||
Line 152: | Line 154: | ||
| 498.95<br>(18.95) | | 498.95<br>(18.95) | ||
| 4/3<br>(81/80) | | 4/3<br>(81/80) | ||
| [[ | | [[Quintile]] | ||
|- | |- | ||
| 10 | | 10 | ||
Line 164: | Line 166: | ||
| 498.95<br>(18.95) | | 498.95<br>(18.95) | ||
| 4/3<br>(81/80) | | 4/3<br>(81/80) | ||
| [[ | | [[Decile]] | ||
|- | |- | ||
| 19 | | 19 | ||
Line 184: | Line 186: | ||
| [[Semihemienneadecal]] | | [[Semihemienneadecal]] | ||
|} | |} | ||
<nowiki>* | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Scales == | == Scales == | ||
Line 197: | Line 199: | ||
* [http://micro.soonlabel.com/tuning-survey/daily20111026-16-slendric-virgins.mp3 ''16 Slendric Virgins''] | * [http://micro.soonlabel.com/tuning-survey/daily20111026-16-slendric-virgins.mp3 ''16 Slendric Virgins''] | ||
[[Category:Ekadash]] | [[Category:Ekadash]] | ||
[[Category:Gamelismic]] | [[Category:Gamelismic]] | ||
[[Category:Listen]] | |||
[[Category:Portent]] | [[Category:Portent]] | ||
[[Category:Portentous]] | [[Category:Portentous]] | ||
[[Category: | [[Category:Unidec]] |
Latest revision as of 17:55, 19 February 2025
← 189edo | 190edo | 191edo → |
190 equal divisions of the octave (abbreviated 190edo or 190ed2), also called 190-tone equal temperament (190tet) or 190 equal temperament (190et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 190 equal parts of about 6.32 ¢ each. Each step represents a frequency ratio of 21/190, or the 190th root of 2.
Theory
190edo is distinctly consistent in the 15-odd-limit with a flat tendency, as harmonics 3 through 13 are all tuned flat.
190edo is interesting because of the utility of its approximations; it tempers out 1029/1024, 4375/4374, 385/384, 441/440, 3025/3024, and 9801/9800. It provides the optimal patent val for both the 7- and 11-limit versions of unidec, the 72 & 118 temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament portent, which tempers out 385/384 and 441/440, and gamelan, the rank-3 7-limit temperament which tempers out 1029/1024, as well as slendric, the 2.3.7 subgroup temperament featured in the #Music section. In the 13-limit, 190et tempers out 625/624, 729/728, 847/845, 1001/1000 and 1575/1573, and provides the optimal patent val for the ekadash temperament and the rank-3 portentous temperament.
The 190g val shows us a smooth path to the even higher limits. This extension tempers out 289/288, 561/560, 595/594 in the 17-limit; 343/342, 476/475, 495/494 in the 19-limit; and 391/390, 529/528 in the 23-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.90 | -1.05 | -2.51 | -1.84 | -0.53 | +2.41 | -0.67 | -3.01 | -0.10 | -1.88 |
Relative (%) | +0.0 | -14.3 | -16.6 | -39.7 | -29.2 | -8.4 | +38.2 | -10.6 | -47.7 | -1.6 | -29.7 | |
Steps (reduced) |
190 (0) |
301 (111) |
441 (61) |
533 (153) |
657 (87) |
703 (133) |
777 (17) |
807 (47) |
859 (99) |
923 (163) |
941 (181) |
Subsets and supersets
Since 190 factors into 2 × 5 × 19, 190edo has subset edos 2, 5, 10, 19, 38, and 95.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-301 190⟩ | [⟨190 301]] | +0.285 | 0.285 | 4.51 |
2.3.5 | 2109375/2097152, [-7 22 -12⟩ | [⟨190 301 441]] | +0.341 | 0.246 | 3.89 |
2.3.5.7 | 1029/1024, 4375/4374, 235298/234375 | [⟨190 301 441 533]] | +0.479 | 0.321 | 5.07 |
2.3.5.7.11 | 385/384, 441/440, 4375/4374, 234375/234256 | [⟨190 301 441 533 657]] | +0.490 | 0.288 | 4.55 |
2.3.5.7.11.13 | 385/384, 441/440, 625/624, 729/728, 847/845 | [⟨190 301 441 533 657 703]] | +0.432 | 0.293 | 4.63 |
2.3.5.7.11.13.17 | 289/288, 385/384, 441/440, 561/560, 625/624, 847/845 | [⟨190 301 441 533 657 703 776]] (190g) | +0.507 | 0.327 | 5.18 |
2.3.5.7.11.13.17.19 | 289/288, 343/342, 385/384, 441/440, 476/475, 495/494, 847/845 | [⟨190 301 441 533 657 703 776 807]] (190g) | +0.463 | 0.327 | 5.17 |
2.3.5.7.11.13.17.19.23 | 289/288, 343/342, 385/384, 391/390, 441/440, 476/475, 495/494, 529/528 | [⟨190 301 441 533 657 703 776 807 859]] (190g) | +0.486 | 0.315 | 4.98 |
- 190et (190g val) has a lower relative error in the 23-limit than any previous equal temperaments, being the first to beat 94. However, 193, only slightly larger, beats it.
- It is also prominent in the 13- and 19-limit, with lower absolute errors than any previous equal temperaments. It beats 183 in either subgroup and is bettered by 198 in the 13-limit, and by 193 in the 19-limit.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 37\190 | 233.68 | 8/7 | Slendric |
1 | 43\190 | 271.58 | 75/64 | Sabric |
1 | 49\190 | 309.47 | 448/375 | Triwell |
1 | 71\190 | 448.42 | 35/27 | Semidimfourth |
1 | 83\190 | 524.21 | 65/48 | Widefourth |
2 | 28\190 | 176.84 | 195/176 | Quatracot |
2 | 29\190 | 183.16 | 10/9 | Unidec / ekadash |
2 | 59\190 (36\190) |
372.63 (227.37) |
26/21 (297/260) |
Essence |
2 | 71\190 (24\190) |
448.42 (151.58) |
35/27 (12/11) |
Neusec |
5 | 79\190 (3\190) |
498.95 (18.95) |
4/3 (81/80) |
Quintile |
10 | 50\190 (7\190) |
315.79 (45.79) |
6/5 (40/39) |
Deca |
10 | 79\190 (3\190) |
498.95 (18.95) |
4/3 (81/80) |
Decile |
19 | 79\190 (1\190) |
498.95 (6.32) |
4/3 (225/224) |
Enneadecal |
38 | 79\190 (1\190) |
265.26 (6.32) |
4/3 (225/224) |
Hemienneadecal |
38 | 42\190 (2\190) |
265.26 (12.63) |
500/429 (144/143) |
Semihemienneadecal |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct