Gariboh clan: Difference between revisions
Update keys |
m Update linking |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
The '''gariboh clan'' of [[Rank-2 temperament|rank-2]] [[temperament]]s [[Tempering out|tempers out]] the gariboh comma, [[3125/3087]] = {{monzo| 0 -2 5 -3 }} | {{Technical data page}} | ||
The '''gariboh clan''' of [[Rank-2 temperament|rank-2]] [[temperament]]s [[Tempering out|tempers out]] the gariboh comma, [[3125/3087]] = {{monzo| 0 -2 5 -3 }}. | |||
== Sirius == | == Sirius == | ||
Line 15: | Line 14: | ||
[[Optimal ET sequence]]: [[6edt|b6]], [[7edt|b7]], [[13edt|b13]], [[71edt|b71]], [[84edt|b84]], [[97edt|b97]], [[110edt|b110]], [[123edt|b123]], [[136edt|b136]] | [[Optimal ET sequence]]: [[6edt|b6]], [[7edt|b7]], [[13edt|b13]], [[71edt|b71]], [[84edt|b84]], [[97edt|b97]], [[110edt|b110]], [[123edt|b123]], [[136edt|b136]] | ||
=== Overview to extensions === | |||
The full 7-limit extensions' relation to sirius is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are diminished, ammonite, and maja. | |||
The others are weak extensions. Bohpier tempers out [[245/243]] with a 1/13-twelfth period. Kleiboh tempers out [[1728/1715]] with a 1/6-twelfth period. Passion tempers out [[64/63]], splitting the generator in six. Garibaldi tempers out [[225/224]]. Quasitemp tempers out [[875/864]]. Dodecacot tempers out [[10976/10935]]. These split the generator in five. Trismegistus tempers out [[1029/1024]], splitting the generator in two with a 1/5-twelfth period. Finally, semaja tempers out [[6144/6125]], splitting the generator in eleven. | |||
See: | |||
* ''[[Diminished]]'' (+36/35) → [[Diminished family #Septimal diminished|Diminished family]] | |||
* ''[[Ammonite]]'' (+250/243) → [[Porcupine family #Ammonite|Porcupine family]] | |||
* ''[[Maja]]'' (+2430/2401) → [[Maja family #Septimal maja|Maja family]] | |||
* [[Bohpier]] (+245/243) → [[Sensamagic clan #Bohpier|Sensamagic clan]] | |||
* ''[[Kleiboh]]'' (+1728/1715) → [[Kleismic family #Kleiboh|Kleismic family]] | |||
* ''[[Passion]]'' (+64/63) → [[Passion family #Passion|Passion family]] | |||
* ''[[Garibaldi]]'' (+225/224) → [[Schismatic family #Garibaldi|Schismatic family]] | |||
* ''[[Quasitemp]]'' (+875/864) → [[Keemic temperaments #Quasitemp|Keemic temperaments]] | |||
* ''[[Dodecacot]]'' (+10976/10935) → [[Tetracot family #Dodecacot|Tetracot family]] | |||
* ''[[Trismegistus]]'' (+1029/1024) → [[Magic family #Trismegistus|Magic family]] | |||
* ''[[Semaja]]'' (+6144/6125) → [[Porwell temperaments #Semaja|Porwell temperaments]] | |||
For no-twos extensions, see [[No-twos subgroup temperaments#Sirius|No-twos subgroup temperaments]]. | |||
[[Category:Temperament clans]] | [[Category:Temperament clans]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Gariboh clan| ]] <!-- main article --> | [[Category:Gariboh clan| ]] <!-- main article --> | ||
[[Category:Gariboh| ]] <!-- key article --> | [[Category:Gariboh| ]] <!-- key article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Latest revision as of 12:40, 21 August 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The gariboh clan of rank-2 temperaments tempers out the gariboh comma, 3125/3087 = [0 -2 5 -3⟩.
Sirius
Subgroup: 3.5.7
Comma list: 3125/3087
Subgroup-val mapping: [⟨1 1 1], ⟨0 3 5]]
- sval mapping generators: ~3, ~25/21
Optimal tuning (POTE): ~3 = 1\1edt, ~25/21 = 293.740
Optimal ET sequence: b6, b7, b13, b71, b84, b97, b110, b123, b136
Overview to extensions
The full 7-limit extensions' relation to sirius is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are diminished, ammonite, and maja.
The others are weak extensions. Bohpier tempers out 245/243 with a 1/13-twelfth period. Kleiboh tempers out 1728/1715 with a 1/6-twelfth period. Passion tempers out 64/63, splitting the generator in six. Garibaldi tempers out 225/224. Quasitemp tempers out 875/864. Dodecacot tempers out 10976/10935. These split the generator in five. Trismegistus tempers out 1029/1024, splitting the generator in two with a 1/5-twelfth period. Finally, semaja tempers out 6144/6125, splitting the generator in eleven.
See:
- Diminished (+36/35) → Diminished family
- Ammonite (+250/243) → Porcupine family
- Maja (+2430/2401) → Maja family
- Bohpier (+245/243) → Sensamagic clan
- Kleiboh (+1728/1715) → Kleismic family
- Passion (+64/63) → Passion family
- Garibaldi (+225/224) → Schismatic family
- Quasitemp (+875/864) → Keemic temperaments
- Dodecacot (+10976/10935) → Tetracot family
- Trismegistus (+1029/1024) → Magic family
- Semaja (+6144/6125) → Porwell temperaments
For no-twos extensions, see No-twos subgroup temperaments.