130edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 234941316 - Original comment: **
Yourmusic Productions (talk | contribs)
Add lumatone mapping link.
 
(72 intermediate revisions by 22 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-06-07 15:10:38 UTC</tt>.<br>
: The original revision id was <tt>234941316</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//130edo// divides the octave into 130 parts of size 9.231 cents each. It is the tenth [[http://www.research.att.com/~njas/sequences/A117538|Zeta integral temperament]]. It can be used to tune a variety of temperaments, including hemiwuerschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit.


7-limit commas: 2401/2400, 3136/3125, 19683/19600
== Theory ==
130edo is a [[zeta peak edo]], a [[zeta peak integer edo]], and a [[zeta integral edo]] but not a gap edo. It is [[distinctly consistent]] to the [[15-odd-limit]] and is the first [[trivial temperament|nontrivial edo]] to be consistent in the 14-[[odd prime sum limit|odd-prime-sum-limit]]. As an equal temperament, it [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[19683/19600]] in the 7-limit; [[243/242]], [[441/440]], [[540/539]], and [[4000/3993]] in the 11-limit; and [[351/350]], [[364/363]], [[676/675]], [[729/728]], [[1001/1000]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]] in the 13-limit. It can be used to tune a variety of temperaments, including [[hemiwürschmidt]], [[sesquiquartififths]], [[harry]] and [[hemischis]]. It also can be used to tune the [[rank-3 temperament]] [[jove]], tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and [[595/594]] for the 17-limit. It gives the [[optimal patent val]] for 11-limit [[hemiwürschmidt]] and [[Schismatic family #Sesquiquartififths|sesquart]] and 13-limit [[harry]].


11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993
=== Prime harmonics ===
{{Harmonics in equal|130|columns=9}}
{{Harmonics in equal|130|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 130edo (continued)}}


13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363
=== Subsets and supersets ===
Since 130 factors into 2 × 5 × 13, 130edo has subset edos {{EDOs| 2, 5, 10, 13, 26, and 65 }}.


17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875
[[260edo]], which divides the edostep in two, provides a strong correction for the 29th harmonic.


==Music==
== Intervals ==
[[http://www.archive.org/details/TheParadiseOfCantor|The Paradise of Cantor]] [[http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3|play]] by [[Gene Ward Smith]]</pre></div>
{| class="wikitable center-all right-2 left-3"
<h4>Original HTML content:</h4>
|-
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;130edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;130edo&lt;/em&gt; divides the octave into 130 parts of size 9.231 cents each. It is the tenth &lt;a class="wiki_link_ext" href="http://www.research.att.com/~njas/sequences/A117538" rel="nofollow"&gt;Zeta integral temperament&lt;/a&gt;. It can be used to tune a variety of temperaments, including hemiwuerschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit.&lt;br /&gt;
! Degree
&lt;br /&gt;
! Cents
7-limit commas: 2401/2400, 3136/3125, 19683/19600&lt;br /&gt;
! Approximate ratios
&lt;br /&gt;
|-
11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993&lt;br /&gt;
| 0
&lt;br /&gt;
| 0.00
13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363&lt;br /&gt;
| 1/1
&lt;br /&gt;
|-
17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875&lt;br /&gt;
| 1
&lt;br /&gt;
| 9.23
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Music&lt;/h2&gt;
| ''126/125'', 144/143, 169/168, 176/175, 196/195, 225/224
&lt;a class="wiki_link_ext" href="http://www.archive.org/details/TheParadiseOfCantor" rel="nofollow"&gt;The Paradise of Cantor&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
|-
| 2
| 18.46
| 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120
|-
| 3
| 27.69
| 56/55, 64/63, 65/64, 66/65
|-
| 4
| 36.92
| 45/44, 49/48, 50/49, ''55/54''
|-
| 5
| 46.15
| 36/35, 40/39
|-
| 6
| 55.38
| 33/32
|-
| 7
| 64.62
| 27/26, 28/27
|-
| 8
| 73.85
| 25/24, 26/25
|-
| 9
| 83.08
| 21/20, 22/21
|-
| 10
| 92.31
| 135/128
|-
| 11
| 101.54
| 35/33
|-
| 12
| 110.77
| 16/15
|-
| 13
| 120.00
| 15/14
|-
| 14
| 129.23
| 14/13
|-
| 15
| 138.46
| 13/12
|-
| 16
| 147.69
| 12/11
|-
| 17
| 156.92
| 35/32
|-
| 18
| 166.15
| 11/10
|-
| 19
| 175.38
| 72/65
|-
| 20
| 184.62
| 10/9
|-
| 21
| 193.85
| 28/25
|-
| 22
| 203.08
| 9/8
|-
| 23
| 212.31
| 44/39
|-
| 24
| 221.54
| 25/22
|-
| 25
| 230.77
| 8/7
|-
| 26
| 240.00
| 55/48
|-
| 27
| 249.23
| 15/13
|-
| 28
| 258.46
| 64/55
|-
| 29
| 267.69
| 7/6
|-
| 30
| 276.92
| 75/64
|-
| 31
| 286.15
| 13/11
|-
| 32
| 295.38
| 32/27
|-
| 33
| 304.62
| 25/21
|-
| 34
| 313.85
| 6/5
|-
| 35
| 323.08
| 65/54
|-
| 36
| 332.31
| 40/33
|-
| 37
| 341.54
| 39/32
|-
| 38
| 350.77
| 11/9, 27/22
|-
| 39
| 360.00
| 16/13
|-
| 40
| 369.23
| 26/21
|-
| 41
| 378.46
| 56/45
|-
| 42
| 387.69
| 5/4
|-
| 43
| 396.92
| 44/35
|-
| 44
| 406.15
| 81/64
|-
| 45
| 415.38
| 14/11
|-
| 46
| 424.62
| 32/25
|-
| 47
| 433.85
| 9/7
|-
| 48
| 443.08
| 84/65, 128/99
|-
| 49
| 452.31
| 13/10
|-
| 50
| 461.54
| 64/49, ''72/55''
|-
| 51
| 470.77
| 21/16
|-
| 52
| 480.00
| 33/25
|-
| 53
| 489.23
| 65/49
|-
| 54
| 498.46
| 4/3
|-
| 55
| 507.69
| 75/56
|-
| 56
| 516.92
| 27/20
|-
| 57
| 526.15
| 65/48
|-
| 58
| 535.38
| 15/11
|-
| 59
| 544.62
| 48/35
|-
| 60
| 553.85
| 11/8
|-
| 61
| 563.08
| 18/13
|-
| 62
| 572.31
| 25/18
|-
| 63
| 581.54
| 7/5
|-
| 64
| 590.77
| 45/32
|-
| 65
| 600.00
| 99/70, 140/99
|-
|…
|…
|…
|}
 
== Notation ==
=== Sagittal notation ===
{| class="wikitable center-all"
! Steps
| 0
| 1
| 2
| 3
| 4
| 5
| 6
| 7
| 8
| 9
| 10
| 11
| 12
|-
! Symbol
| [[File:Sagittal natural.png]]
| [[File:Sagittal nai.png]]
| [[File:Sagittal pai.png]]
| [[File:Sagittal tai.png]]
| [[File:Sagittal phai.png]]
| [[File:Sagittal patai.png]]
| [[File:Sagittal pakai.png]]
| [[File:Sagittal jakai.png]]
| [[File:Sagittal sharp phao.png]]
| [[File:Sagittal sharp tao.png]]
| [[File:Sagittal sharp pao.png]]
| [[File:Sagittal sharp nao.png]]
| [[File:Sagittal sharp.png]]
|}
 
== Approximation to JI ==
=== Zeta peak index ===
{{ZPI
| zpi = 796
| steps = 130.003910460506
| step size = 9.23049157328654
| tempered height = 10.355108
| pure height = 10.339572
| integral = 1.634018
| gap = 19.594551
| octave = 1199.96390452725
| consistent = 16
| distinct = 16
}}
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5.7
| 2401/2400, 3136/3125, 19683/19600
| {{Mapping| 130 206 302 365 }}
| −0.119
| 0.311
| 3.37
|-
| 2.3.5.7.11
| 243/242, 441/440, 3136/3125, 4000/3993
| {{Mapping| 130 206 302 365 450 }}
| −0.241
| 0.370
| 4.02
|-
| 2.3.5.7.11.13
| 243/242, 351/350, 364/363, 441/440, 3136/3125
| {{Mapping| 130 206 302 365 450 481 }}
| −0.177
| 0.367
| 3.98
|}
 
=== Rank-2 temperaments ===
Note: temperaments supported by [[65edo|65et]] are not included.
 
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperament
|-
| 1
| 3\130
| 27.69
| 64/63
| [[Arch]]
|-
| 1
| 7\130
| 64.62
| 26/25
| [[Rectified hebrew]]
|-
| 1
| 9\130
| 83.08
| 21/20
| [[Sextilifourths]]
|-
| 1
| 19\130
| 175.38
| 72/65
| [[Sesquiquartififths]] / [[sesquart]]
|-
| 1
| 21\130
| 193.85
| 28/25
| [[Hemiwürschmidt]]
|-
| 1
| 27\130
| 249.23
| 15/13
| [[Hemischis]]
|-
| 1
| 41\130
| 378.46
| 56/45
| [[Subpental]]
|-
| 2
| 6\130
| 55.38
| 33/32
| [[Septisuperfourth]]
|-
| 2
| 9\130
| 83.08
| 21/20
| [[Harry]]
|-
| 2
| 17\130
| 156.92
| 35/32
| [[Bison]]
|-
| 2
| 19\130
| 175.38
| 448/405
| [[Bisesqui]]
|-
| 2
| 54\130<br>(11\130)
| 498.46<br>(101.54)
| 4/3<br>(35/33)
| [[Bischismic]]
|-
| 5
| 27\130<br>(1\130)
| 249.23<br>(9.23)
| 81/70<br>(176/175)
| [[Hemiquintile]]
|-
| 10
| 27\130<br>(1\130)
| 249.23<br>(9.23)
| 15/13<br>(176/175)
| [[Decoid]]
|-
| 10
| 54\130<br>(2\130)
| 498.46<br>(18.46)
| 4/3<br>(81/80)
| [[Decile]]
|-
| 26
| 54\130<br>(1\130)
| 498.46<br>(9.23)
| 4/3<br>(225/224)
| [[Bosonic]]
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Scales ==
{| class="wikitable"
|+ style="font-size: 105%;" | 14-tone temperament of "Narrative Wars"<br />as an example of using 130edo:
|-
! Step
! Cents
! Distance to the nearest JI interval<br />(selected ratios)
|-
| 13 (13/130)
| 120.000
| [[15/14]] (+0.557{{c}})
|-
| 7 (20/130)
| 184.615
| [[10/9]] (+2.211{{c}})
|-
| 9 (29/130)
| 267.692
| [[7/6]] (+0,821{{c}})
|-
| 9 (38/130)
| 350.769
| [[11/9]] (+3.361{{c}})
|-
| 9 (47/130)
| 433.846
| [[9/7]] (−1.238{{c}})
|-
| 7 (54/130)
| 498.462
| [[4/3]] (+0.417{{c}})
|-
| 13 (67/130)
| 618.462
| [[10/7]] (+0.974{{c}})
|-
| 9 (76/130)
| 701.538
| [[3/2]] (−0.417{{c}})
|-
| 7 (83/130)
| 766.154
| [[14/9]] (+1.238{{c}})
|-
| 13 (96/130)
| 886.154
| [[5/3]] (+1.795{{c}})
|-
| 5 (101/130)
| 932.308
| [[12/7]] (−0.821{{c}})
|-
| 13 (114/130)
| 1052.308
| [[11/6]] (+2.945{{c}})
|-
| 7 (121/130)
| 1116.923
| [[21/11]] (−2.540{{c}})
|-
| 9 (130/130)
| 1200.000
| [[Octave]] (2/1, 0{{c}})
|}
 
== Instruments ==
[[Lumatone mapping for 130edo]]
 
== Music ==
{{Catrel|130edo tracks}}
 
; [[birdshite stalactite]]
* [https://www.youtube.com/watch?v=q41n5XI6YA4 ''wazzock''] (2024)
 
; [[Sevish]]
* [https://www.youtube.com/watch?v=30UQVYWnsDU Narrative Wars]
 
; [[Gene Ward Smith]]
* [https://www.archive.org/details/TheParadiseOfCantor ''The Paradise of Cantor''] [https://www.archive.org/download/TheParadiseOfCantor/cantor.mp3 play] (2006)
 
[[Category:Harry]]
[[Category:Hemischis]]
[[Category:Hemiwürschmidt]]
[[Category:Listen]]
[[Category:Sesquiquartififths]]

Latest revision as of 10:27, 11 May 2025

← 129edo 130edo 131edo →
Prime factorization 2 × 5 × 13
Step size 9.23077 ¢ 
Fifth 76\130 (701.538 ¢) (→ 38\65)
Semitones (A1:m2) 12:10 (110.8 ¢ : 92.31 ¢)
Consistency limit 15
Distinct consistency limit 15

130 equal divisions of the octave (abbreviated 130edo or 130ed2), also called 130-tone equal temperament (130tet) or 130 equal temperament (130et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 130 equal parts of about 9.23 ¢ each. Each step represents a frequency ratio of 21/130, or the 130th root of 2.

Theory

130edo is a zeta peak edo, a zeta peak integer edo, and a zeta integral edo but not a gap edo. It is distinctly consistent to the 15-odd-limit and is the first nontrivial edo to be consistent in the 14-odd-prime-sum-limit. As an equal temperament, it tempers out 2401/2400, 3136/3125, 6144/6125, and 19683/19600 in the 7-limit; 243/242, 441/440, 540/539, and 4000/3993 in the 11-limit; and 351/350, 364/363, 676/675, 729/728, 1001/1000, 1575/1573, 1716/1715, 2080/2079, 4096/4095, and 4225/4224 in the 13-limit. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischis. It also can be used to tune the rank-3 temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the optimal patent val for 11-limit hemiwürschmidt and sesquart and 13-limit harry.

Prime harmonics

Approximation of prime harmonics in 130edo
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +0.00 -0.42 +1.38 +0.40 +2.53 -0.53 -3.42 -2.13 -0.58
Relative (%) +0.0 -4.5 +14.9 +4.4 +27.4 -5.7 -37.0 -23.1 -6.3
Steps
(reduced)
130
(0)
206
(76)
302
(42)
365
(105)
450
(60)
481
(91)
531
(11)
552
(32)
588
(68)
Approximation of prime harmonics in 130edo (continued)
Harmonic 29 31 37 41 43 47 53 59 61
Error Absolute (¢) +4.27 -0.42 -2.11 -4.45 -3.83 -0.89 +3.42 +2.37 +0.04
Relative (%) +46.2 -4.6 -22.9 -48.2 -41.4 -9.7 +37.0 +25.6 +0.4
Steps
(reduced)
632
(112)
644
(124)
677
(27)
696
(46)
705
(55)
722
(72)
745
(95)
765
(115)
771
(121)

Subsets and supersets

Since 130 factors into 2 × 5 × 13, 130edo has subset edos 2, 5, 10, 13, 26, and 65.

260edo, which divides the edostep in two, provides a strong correction for the 29th harmonic.

Intervals

Degree Cents Approximate ratios
0 0.00 1/1
1 9.23 126/125, 144/143, 169/168, 176/175, 196/195, 225/224
2 18.46 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120
3 27.69 56/55, 64/63, 65/64, 66/65
4 36.92 45/44, 49/48, 50/49, 55/54
5 46.15 36/35, 40/39
6 55.38 33/32
7 64.62 27/26, 28/27
8 73.85 25/24, 26/25
9 83.08 21/20, 22/21
10 92.31 135/128
11 101.54 35/33
12 110.77 16/15
13 120.00 15/14
14 129.23 14/13
15 138.46 13/12
16 147.69 12/11
17 156.92 35/32
18 166.15 11/10
19 175.38 72/65
20 184.62 10/9
21 193.85 28/25
22 203.08 9/8
23 212.31 44/39
24 221.54 25/22
25 230.77 8/7
26 240.00 55/48
27 249.23 15/13
28 258.46 64/55
29 267.69 7/6
30 276.92 75/64
31 286.15 13/11
32 295.38 32/27
33 304.62 25/21
34 313.85 6/5
35 323.08 65/54
36 332.31 40/33
37 341.54 39/32
38 350.77 11/9, 27/22
39 360.00 16/13
40 369.23 26/21
41 378.46 56/45
42 387.69 5/4
43 396.92 44/35
44 406.15 81/64
45 415.38 14/11
46 424.62 32/25
47 433.85 9/7
48 443.08 84/65, 128/99
49 452.31 13/10
50 461.54 64/49, 72/55
51 470.77 21/16
52 480.00 33/25
53 489.23 65/49
54 498.46 4/3
55 507.69 75/56
56 516.92 27/20
57 526.15 65/48
58 535.38 15/11
59 544.62 48/35
60 553.85 11/8
61 563.08 18/13
62 572.31 25/18
63 581.54 7/5
64 590.77 45/32
65 600.00 99/70, 140/99

Notation

Sagittal notation

Steps 0 1 2 3 4 5 6 7 8 9 10 11 12
Symbol

Approximation to JI

Zeta peak index

Tuning Strength Octave (cents) Integer limit
ZPI Steps
per 8ve
Step size
(cents)
Height Integral Gap Size Stretch Consistent Distinct
Tempered Pure
796zpi 130.00391 9.230492 10.355108 10.339572 1.634018 19.594551 1199.963905 −0.036095 16 16

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 3136/3125, 19683/19600 [130 206 302 365]] −0.119 0.311 3.37
2.3.5.7.11 243/242, 441/440, 3136/3125, 4000/3993 [130 206 302 365 450]] −0.241 0.370 4.02
2.3.5.7.11.13 243/242, 351/350, 364/363, 441/440, 3136/3125 [130 206 302 365 450 481]] −0.177 0.367 3.98

Rank-2 temperaments

Note: temperaments supported by 65et are not included.

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperament
1 3\130 27.69 64/63 Arch
1 7\130 64.62 26/25 Rectified hebrew
1 9\130 83.08 21/20 Sextilifourths
1 19\130 175.38 72/65 Sesquiquartififths / sesquart
1 21\130 193.85 28/25 Hemiwürschmidt
1 27\130 249.23 15/13 Hemischis
1 41\130 378.46 56/45 Subpental
2 6\130 55.38 33/32 Septisuperfourth
2 9\130 83.08 21/20 Harry
2 17\130 156.92 35/32 Bison
2 19\130 175.38 448/405 Bisesqui
2 54\130
(11\130)
498.46
(101.54)
4/3
(35/33)
Bischismic
5 27\130
(1\130)
249.23
(9.23)
81/70
(176/175)
Hemiquintile
10 27\130
(1\130)
249.23
(9.23)
15/13
(176/175)
Decoid
10 54\130
(2\130)
498.46
(18.46)
4/3
(81/80)
Decile
26 54\130
(1\130)
498.46
(9.23)
4/3
(225/224)
Bosonic

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Scales

14-tone temperament of "Narrative Wars"
as an example of using 130edo:
Step Cents Distance to the nearest JI interval
(selected ratios)
13 (13/130) 120.000 15/14 (+0.557 ¢)
7 (20/130) 184.615 10/9 (+2.211 ¢)
9 (29/130) 267.692 7/6 (+0,821 ¢)
9 (38/130) 350.769 11/9 (+3.361 ¢)
9 (47/130) 433.846 9/7 (−1.238 ¢)
7 (54/130) 498.462 4/3 (+0.417 ¢)
13 (67/130) 618.462 10/7 (+0.974 ¢)
9 (76/130) 701.538 3/2 (−0.417 ¢)
7 (83/130) 766.154 14/9 (+1.238 ¢)
13 (96/130) 886.154 5/3 (+1.795 ¢)
5 (101/130) 932.308 12/7 (−0.821 ¢)
13 (114/130) 1052.308 11/6 (+2.945 ¢)
7 (121/130) 1116.923 21/11 (−2.540 ¢)
9 (130/130) 1200.000 Octave (2/1, 0 ¢)

Instruments

Lumatone mapping for 130edo

Music

See also: Category:130edo tracks
birdshite stalactite
Sevish
Gene Ward Smith