84edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
m Add intervals split harmonics
m See also: +9ed9/8
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''[[Edt|Division of the third harmonic]] into 84 equal parts''' (84EDT) is practically identical to [[53edo|53 edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 0.0430 cents stretched and the step size is about 22.6423 cents.
{{ED intro}}
 
== Theory ==
84edt is practically identical to [[53edo]], but with the 3/1 rather than the [[2/1]] being just. The octave is about 0.0430 cents stretched. Like 53edo, 84edt is [[consistent]] to the [[integer limit|10-integer-limit]].
 
=== Harmonics ===
{{Harmonics in equal|84|3|1|intervals=integer}}
{{Harmonics in equal|84|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 84edt (continued)}}
 
=== Subsets and supersets ===
84 is a [[largely composite]] number. Since it factors into primes as {{nowrap| 2<sup>2</sup> × 3 × 7 }}, 84edt has subset edts {{EDs|equave=t| 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 }}.


== Intervals ==
== Intervals ==
{{Interval table}}
{{Interval table}}


== Harmonics ==
== See also ==
{{Harmonics in equal
* [[9ed9/8]] – relative ed9/8
| steps = 84
* [[31edf]] – relative edf
| num = 3
* [[53edo]] – relative edo
| denom = 1
* [[137ed6]] – relative ed6
| intervals = integer
}}
{{Harmonics in equal
| steps = 84
| num = 3
| denom = 1
| start = 12
| collapsed = 1
| intervals = integer
}}
 
[[Category:Edt]]
[[Category:Edonoi]]

Latest revision as of 10:58, 24 March 2025

← 83edt 84edt 85edt →
Prime factorization 22 × 3 × 7
Step size 22.6423 ¢ 
Octave 53\84edt (1200.04 ¢)
(convergent)
Consistency limit 10
Distinct consistency limit 10

84 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 84edt or 84ed3), is a nonoctave tuning system that divides the interval of 3/1 into 84 equal parts of about 22.6 ¢ each. Each step represents a frequency ratio of 31/84, or the 84th root of 3.

Theory

84edt is practically identical to 53edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.0430 cents stretched. Like 53edo, 84edt is consistent to the 10-integer-limit.

Harmonics

Approximation of harmonics in 84edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.04 +0.00 +0.09 -1.31 +0.04 +4.88 +0.13 +0.00 -1.27 -7.77 +0.09
Relative (%) +0.2 +0.0 +0.4 -5.8 +0.2 +21.6 +0.6 +0.0 -5.6 -34.3 +0.4
Steps
(reduced)
53
(53)
84
(0)
106
(22)
123
(39)
137
(53)
149
(65)
159
(75)
168
(0)
176
(8)
183
(15)
190
(22)
Approximation of harmonics in 84edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -2.63 +4.92 -1.31 +0.17 +8.43 +0.04 -2.99 -1.22 +4.88 -7.73 +5.88 +0.13
Relative (%) -11.6 +21.7 -5.8 +0.8 +37.2 +0.2 -13.2 -5.4 +21.6 -34.1 +26.0 +0.6
Steps
(reduced)
196
(28)
202
(34)
207
(39)
212
(44)
217
(49)
221
(53)
225
(57)
229
(61)
233
(65)
236
(68)
240
(72)
243
(75)

Subsets and supersets

84 is a largely composite number. Since it factors into primes as 22 × 3 × 7, 84edt has subset edts 2, 3, 4, 6, 7, 12, 14, 21, 28, 42.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 22.6 15.5
2 45.3 31 37/36, 38/37, 39/38, 40/39, 41/40
3 67.9 46.4 25/24, 26/25, 27/26
4 90.6 61.9 19/18, 20/19, 39/37
5 113.2 77.4 16/15
6 135.9 92.9 13/12, 27/25, 40/37
7 158.5 108.3 23/21, 34/31
8 181.1 123.8 10/9
9 203.8 139.3 9/8
10 226.4 154.8 33/29, 41/36
11 249.1 170.2 15/13, 37/32
12 271.7 185.7 41/35
13 294.4 201.2 32/27
14 317 216.7 6/5
15 339.6 232.1 28/23, 39/32
16 362.3 247.6 16/13, 37/30
17 384.9 263.1 5/4
18 407.6 278.6 19/15
19 430.2 294 32/25, 41/32
20 452.8 309.5 13/10
21 475.5 325 25/19, 29/22
22 498.1 340.5 4/3
23 520.8 356 23/17, 27/20
24 543.4 371.4 26/19, 37/27, 41/30
25 566.1 386.9 18/13, 25/18
26 588.7 402.4 38/27
27 611.3 417.9 27/19, 37/26
28 634 433.3 13/9, 36/25
29 656.6 448.8 19/13
30 679.3 464.3 34/23, 37/25, 40/27
31 701.9 479.8 3/2
32 724.6 495.2 35/23, 38/25, 41/27
33 747.2 510.7 20/13, 37/24
34 769.8 526.2 25/16, 39/25
35 792.5 541.7 30/19
36 815.1 557.1 8/5
37 837.8 572.6 13/8
38 860.4 588.1 23/14
39 883.1 603.6 5/3
40 905.7 619 27/16
41 928.3 634.5 41/24
42 951 650 26/15
43 973.6 665.5
44 996.3 681 16/9
45 1018.9 696.4 9/5
46 1041.5 711.9 31/17
47 1064.2 727.4 24/13, 37/20
48 1086.8 742.9 15/8
49 1109.5 758.3 19/10
50 1132.1 773.8 25/13
51 1154.8 789.3 37/19, 39/20
52 1177.4 804.8
53 1200 820.2 2/1
54 1222.7 835.7
55 1245.3 851.2 37/18, 39/19, 41/20
56 1268 866.7 25/12, 27/13
57 1290.6 882.1 19/9, 40/19
58 1313.3 897.6 32/15
59 1335.9 913.1 13/6
60 1358.5 928.6
61 1381.2 944 20/9
62 1403.8 959.5 9/4
63 1426.5 975 41/18
64 1449.1 990.5 30/13, 37/16
65 1471.8 1006
66 1494.4 1021.4
67 1517 1036.9 12/5
68 1539.7 1052.4 39/16
69 1562.3 1067.9 32/13, 37/15
70 1585 1083.3 5/2
71 1607.6 1098.8 38/15
72 1630.2 1114.3 41/16
73 1652.9 1129.8 13/5
74 1675.5 1145.2 29/11
75 1698.2 1160.7 8/3
76 1720.8 1176.2 27/10
77 1743.5 1191.7 41/15
78 1766.1 1207.1 25/9, 36/13
79 1788.7 1222.6
80 1811.4 1238.1 37/13
81 1834 1253.6 26/9
82 1856.7 1269 38/13
83 1879.3 1284.5
84 1902 1300 3/1

See also