5L 7s: Difference between revisions
added intervals Heading and template, added MOS mode degrees template, added "proposed names" subheading |
CompactStar (talk | contribs) No edit summary |
||
Line 3: | Line 3: | ||
5L 7s represents the chromatic scales of [[Pythagorean tuning|Pythagorean]]/[[Schismatic family|schismic]] and [[superpyth]], the former being [[Rothenberg propriety|proper]] but the latter improper until expanded by 5 more notes, producing superpyth[17]. Such scales are characterized by having a small step ([[diatonic semitone]]) that is smaller than the [[chroma]] ([[chromatic semitone]]), the reverse of [[7L 5s]]. | 5L 7s represents the chromatic scales of [[Pythagorean tuning|Pythagorean]]/[[Schismatic family|schismic]] and [[superpyth]], the former being [[Rothenberg propriety|proper]] but the latter improper until expanded by 5 more notes, producing superpyth[17]. Such scales are characterized by having a small step ([[diatonic semitone]]) that is smaller than the [[chroma]] ([[chromatic semitone]]), the reverse of [[7L 5s]]. | ||
The two distinct harmonic entropy minima are, on the one hand, scales very close to Pythagorean such that [[64/63]] is not tempered out, such as the schismatic temperaments known as Helmholtz and Garibaldi, and on the other hand, | The two distinct harmonic entropy minima are, on the one hand, scales very close to Pythagorean such that [[64/63]] is not tempered out, such as the schismatic temperaments known as Helmholtz and Garibaldi, and on the other hand, th simpler and less accurate temperament known as [[archy]] in which 64/63 is tempered out. | ||
==Intervals== | ==Intervals== | ||
{{MOS intervals}} | {{MOS intervals}} |
Revision as of 01:51, 29 July 2024
↖ 4L 6s | ↑ 5L 6s | 6L 6s ↗ |
← 4L 7s | 5L 7s | 6L 7s → |
↙ 4L 8s | ↓ 5L 8s | 6L 8s ↘ |
┌╥┬╥┬╥┬┬╥┬╥┬┬┐ │║│║│║││║│║│││ ││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLsLssLsLsL
5L 7s, also called p-chromatic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a child scale of 5L 2s, expanding it by 5 tones. Generators that produce this scale range from 700 ¢ to 720 ¢, or from 480 ¢ to 500 ¢. 5L 7s represents the chromatic scales of Pythagorean/schismic and superpyth, the former being proper but the latter improper until expanded by 5 more notes, producing superpyth[17]. Such scales are characterized by having a small step (diatonic semitone) that is smaller than the chroma (chromatic semitone), the reverse of 7L 5s.
The two distinct harmonic entropy minima are, on the one hand, scales very close to Pythagorean such that 64/63 is not tempered out, such as the schismatic temperaments known as Helmholtz and Garibaldi, and on the other hand, th simpler and less accurate temperament known as archy in which 64/63 is tempered out.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 100.0 ¢ |
Major 1-mosstep | M1ms | L | 100.0 ¢ to 240.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 200.0 ¢ |
Major 2-mosstep | M2ms | L + s | 200.0 ¢ to 240.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 240.0 ¢ to 300.0 ¢ |
Major 3-mosstep | M3ms | 2L + s | 300.0 ¢ to 480.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 240.0 ¢ to 400.0 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 400.0 ¢ to 480.0 ¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 2L + 3s | 480.0 ¢ to 500.0 ¢ |
Augmented 5-mosstep | A5ms | 3L + 2s | 500.0 ¢ to 720.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 480.0 ¢ to 600.0 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 600.0 ¢ to 720.0 ¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 2L + 5s | 480.0 ¢ to 700.0 ¢ |
Perfect 7-mosstep | P7ms | 3L + 4s | 700.0 ¢ to 720.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 720.0 ¢ to 800.0 ¢ |
Major 8-mosstep | M8ms | 4L + 4s | 800.0 ¢ to 960.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 720.0 ¢ to 900.0 ¢ |
Major 9-mosstep | M9ms | 4L + 5s | 900.0 ¢ to 960.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 960.0 ¢ to 1000.0 ¢ |
Major 10-mosstep | M10ms | 5L + 5s | 1000.0 ¢ to 1200.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 960.0 ¢ to 1100.0 ¢ |
Major 11-mosstep | M11ms | 5L + 6s | 1100.0 ¢ to 1200.0 ¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 5L + 7s | 1200.0 ¢ |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
11|0 | 1 | LsLsLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
10|1 | 8 | LsLssLsLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
9|2 | 3 | LsLssLsLssLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
8|3 | 10 | LssLsLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
7|4 | 5 | LssLsLssLsLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
6|5 | 12 | sLsLsLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
5|6 | 7 | sLsLssLsLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
4|7 | 2 | sLsLssLsLssL | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
3|8 | 9 | sLssLsLsLssL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
2|9 | 4 | sLssLsLssLsL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
1|10 | 11 | ssLsLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
0|11 | 6 | ssLsLssLsLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Dim. | Min. | Min. | Min. | Min. | Perf. |
Proposed Names
The modes are named by Eliora after Chinese zodiac animals. 5L 7s is the opposite mos to 7L 5s, named after a Western concept, Gregorian months, therefore this mos scale has Eastern nomenclature.
UDP | Cyclic order |
Step pattern |
---|---|---|
11|0 | 1 | LsLsLssLsLss |
10|1 | 8 | LsLssLsLsLss |
9|2 | 3 | LsLssLsLssLs |
8|3 | 10 | LssLsLsLssLs |
7|4 | 5 | LssLsLssLsLs |
6|5 | 12 | sLsLsLssLsLs |
5|6 | 7 | sLsLssLsLsLs |
4|7 | 2 | sLsLssLsLssL |
3|8 | 9 | sLssLsLsLssL |
2|9 | 4 | sLssLsLssLsL |
1|10 | 11 | ssLsLsLssLsL |
0|11 | 6 | ssLsLssLsLsL |
Scales
- Pythagorean12 – Pythagorean tuning
- Garibaldi12 – 94edo tuning
- Cotoneum12 – 217edo tuning
- Edson12 – 29edo tuning
- Pepperoni12 – 271edo tuning
- Supra12 – 56edo tuning
- Archy12 – 472edo tuning
- 12-22a – 22edo tuning