Quartonic family
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The quartonic family of temperaments tempers out the quartonic comma, [3 -18 11⟩ = 390625000/387420489.
Quartonic
The name "quartonic" means quarter-tone, which is the generator of this temperament.
Subgroup: 2.3.5
Comma list: 390625000/387420489
Mapping: [⟨1 2 3], ⟨0 -11 -18]]
Optimal tuning (CTE): 2 = 1\1, ~250/243 = 45.2368
Optimal ET sequence: 26, 27, 53, 239, 292, 345, 398, 451
Badness: 0.117250
Overview to extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at.
- 1728/1715 or 4000/3969 gives septimal quartonic, with interpretation of the generator ~36/35. It also tempers out 4375/4374.
- 10976/10935 gives yarman I (80 & 159) and slices the quartonic generator in three.
- 5359375/5308416 gives yarman II (79 & 159) and slices the quartonic generator in three.
- 2401/2400 gives tertiseptisix (27 & 212) with generator ~875/729, three of them give ~12/7, and four give ~250/243 with octave reduction.
- 250047/250000 gives triquart (27 & 159) with 1/3-octave period.
- 390625/388962 or 4802000/4782969 gives quartiquart (80 & 212) with 1/4-octave period.
- 16875/16807 gives quintiquart (80 & 265) with 1/5-octave period.
Septimal quartonic
Subgroup: 2.3.5.7
Comma list: 1728/1715, 4000/3969
Mapping: [⟨1 2 3 3], ⟨0 -11 -18 -5]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.2652
Optimal ET sequence: 26, 27, 53, 80, 133d, 186d, 319dd
Badness: 0.042632
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 540/539, 2200/2187
Mapping: [⟨1 2 3 3 5], ⟨0 -11 -18 -5 -41]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.1674
Optimal ET sequence: 26e, 27e, 53, 80
Badness: 0.034031
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 176/175, 325/324, 540/539
Mapping: [⟨1 2 3 3 5 4], ⟨0 -11 -18 -5 -41 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.1632
Optimal ET sequence: 26e, 27e, 53, 80, 133d, 186d
Badness: 0.023875
Quarto
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/242, 864/847
Mapping: [⟨1 2 3 3 4], ⟨0 -11 -18 -5 -14]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.4022
Optimal ET sequence: 26, 53e, 132ee
Badness: 0.041786
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 78/77, 100/99, 144/143, 245/242
Mapping: [⟨1 2 3 3 4 4], ⟨0 -11 -18 -5 -14 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.3857
Optimal ET sequence: 26, 53e, 132ee
Badness: 0.027692
Quartz
Subgroup: 2.3.5.7.11
Comma list: 99/98, 385/384, 4000/3969
Mapping: [⟨1 2 3 3 3], ⟨0 -11 -18 -5 12]]
Optimal tuning (CTE): ~2 = 1\1, ~33/32 = 45.3313
Badness: 0.053285
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 169/168, 275/273, 385/384
Mapping: [⟨1 2 3 3 3 4], ⟨0 -11 -18 -5 12 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~33/32 = 45.3168
Badness: 0.028818
Biquartonic
Subgroup: 2.3.5.7.11
Comma list: 1728/1715, 2420/2401, 2560/2541
Mapping: [⟨2 4 6 6 7], ⟨0 -11 -18 -5 -1]]
Optimal tuning (CTE): ~99/70 = 1\2, ~36/35 = 45.2678
Optimal ET sequence: 26, 54c, 80, 106
Badness: 0.060737
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 364/363, 640/637
Mapping: [⟨2 4 6 6 7 8], ⟨0 -11 -18 -5 -1 -8]]
Optimal tuning (CTE): ~55/39 = 1\2, ~40/39 = 45.2544
Optimal ET sequence: 26, 54c, 80, 106
Badness: 0.039891
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 289/288, 325/324, 544/539
Mapping: [⟨2 4 6 6 7 8 9], ⟨0 -11 -18 -5 -1 -8 -11]]
Optimal tuning (CTE): ~17/12 = 1\2, ~34/33 = 45.2397
Optimal ET sequence: 26, 54c, 80, 106
Badness: 0.028112
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 169/168, 221/220, 289/288, 325/324, 544/539, 400/399
Mapping: [⟨2 4 6 6 7 8 9 10], ⟨0 -11 -18 -5 -1 -8 -11 -20]]
Optimal tuning (CTE): ~17/12 = 1\2, ~39/38 = 45.222
Optimal ET sequence: 26, 54ch, 80, 106
Badness: 0.0213
Yarm
Subgroup: 2.3.5.7.11
Comma list: 1331/1323, 1728/1715, 4000/3969
Mapping: [⟨1 2 3 3 4], ⟨0 -33 -54 -15 -43]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0880
Optimal ET sequence: 79, 80, 159d
Badness: 0.099950
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 640/637, 1331/1323
Mapping: [⟨1 2 3 3 4 4], ⟨0 -33 -54 -15 -43 -24]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0842
Optimal ET sequence: 79, 80, 159d
Badness: 0.061645
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 325/324, 561/560, 640/637, 850/847
Mapping: [⟨1 2 3 3 4 4 4], ⟨0 -33 -54 -15 -43 -24 7]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0840
Optimal ET sequence: 79, 80, 159d
Badness: 0.046718
Yarman I
Subgroup: 2.3.5.7
Comma list: 10976/10935, 244140625/243045684
Mapping: [⟨1 2 3 4], ⟨0 -33 -54 -95]]
Optimal tuning (CTE): ~2 = 1\1, ~126/125 = 15.0714
Optimal ET sequence: 79d, 80, 159, 239, 398, 637
Badness: 0.193315
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 10976/10935
Mapping: [⟨1 2 3 4 4], ⟨0 -33 -54 -95 -43]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0724
Optimal ET sequence: 79d, 80, 159, 239, 398, 637, 1035bd
Badness: 0.049170
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4], ⟨0 -33 -54 -95 -43 -24]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0707
Optimal ET sequence: 79d, 80, 159, 239, 398f, 637ff
Badness: 0.040929
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4 4], ⟨0 -33 -54 -95 -43 -24 7]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0706
Optimal ET sequence: 79d, 80, 159, 239, 398f, 637ff
Badness: 0.031015
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 325/324, 361/360, 364/363, 595/594, 969/968, 1001/1000
Mapping: [⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0683
Optimal ET sequence: 79dh, 80, 159, 239, 637ffh
Badness: 0.023193
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 325/324, 361/360, 364/363, 460/459, 507/506, 529/528, 760/759
Mapping: [⟨1 2 3 4 4 4 4 5 5], ⟨0 -33 -54 -95 -43 -24 7 -60 -38]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0676
Optimal ET sequence: 79dh, 80, 159, 239, 637ffhi
Badness: 0.017682
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 325/324, 361/360, 364/363, 406/405, 460/459, 494/493, 507/506, 529/528
Mapping: [⟨1 2 3 4 4 4 4 5 5 6], ⟨0 -33 -54 -95 -43 -24 7 -60 -38 -91]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0667
Optimal ET sequence: 79dhj, 80, 159, 239
Badness: 0.014289
Yarman II
Subgroup: 2.3.5.7
Comma list: 5359375/5308416, 390625000/387420489
Mapping: [⟨1 2 3 2], ⟨0 -33 -54 64]]
Optimal tuning (CTE): ~2 = 1\1, ~875/864 = 15.0995
Badness: 0.655487
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 4000/3993, 78121827/77948684
Mapping: [⟨1 2 3 2 4], ⟨0 -33 -54 64 -43]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0982
Badness: 0.143477
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 1575/1573, 85683/85184
Mapping: [⟨1 2 3 2 4 4], ⟨0 -33 -54 64 -43 -24]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0952
Badness: 0.068150
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913
Mapping: [⟨1 2 3 2 4 4 4], ⟨0 -33 -54 64 -43 -24 7]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0950
Badness: 0.051019
Tertiseptisix
Subgroup: 2.3.5.7
Comma list: 2401/2400, 390625000/387420489
Mapping: [⟨1 13 21 15], ⟨0 -44 -72 -47]]
Optimal tuning (CTE): ~2 = 1\1, ~875/729 = 311.308
Optimal ET sequence: 27, 131bccd, 158cd, 185c, 212, 239, 451
Badness: 0.155952
Triquart
Subgroup: 2.3.5.7
Comma list: 117649/116640, 250047/250000
Mapping: [⟨3 6 9 10], ⟨0 -11 -18 -14]]
Optimal tuning (CTE): ~63/50 = 1\3, ~250/243 = 45.2083
Optimal ET sequence: 27, 105cd, 132d, 159, 186, 345d
Badness: 0.170062
Quartiquart
Subgroup: 2.3.5.7
Comma list: 390625/388962, 4802000/4782969
Mapping: [⟨4 8 12 15], ⟨0 -11 -18 -25]]
Optimal tuning (CTE): ~25/21 = 1\4, ~250/243 = 45.2411
Optimal ET sequence: 80, 132d, 212, 292, 504
Badness: 0.199116
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 6250/6237, 14641/14580
Mapping: [⟨4 8 12 15 17], ⟨0 -11 -18 -25 -21]]
Optimal tuning (CTE): ~25/21 = 1\4, ~77/75 = 45.2303
Optimal ET sequence: 80, 132de, 212, 292, 504e
Badness: 0.062450
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 1001/1000, 1375/1372, 10648/10647
Mapping: [⟨4 8 12 15 17 16], ⟨0 -11 -18 -25 -21 -8]]
Optimal tuning (CTE): ~25/21 = 1\4, ~40/39 = 45.2243
Optimal ET sequence: 80, 132de, 212
Badness: 0.045028
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 289/288, 325/324, 561/560, 1001/1000, 10648/10647
Mapping: [⟨4 8 12 15 17 16 18], ⟨0 -11 -18 -25 -21 -8 -11]]
Optimal tuning (CTE): ~25/21 = 1\4, ~40/39 = 45.218
Optimal ET sequence: 52cdeg, 80, 132deg, 212g
Badness: 0.0312
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 289/288, 325/324, 361/360, 561/560, 1001/1000, 1331/1330
Mapping: [⟨4 8 12 15 17 16 18 20], ⟨0 -11 -18 -25 -21 -8 -11 20]]
Optimal tuning (CTE): ~25/21 = 1\4, ~39/38 = 45.210
Optimal ET sequence: 52cdegh, 80, 132degh, 212gh
Badness: 0.0224
Quintiquart
Subgroup: 2.3.5.7
Comma list: 16875/16807, 390625000/387420489
Mapping: [⟨5 10 15 18], ⟨0 -11 -18 -21]]
Optimal tuning (CTE): ~35721/31250 = 1\5, ~250/243 = 45.2563
Optimal ET sequence: 80, 185c, 265, 610d, 875cd
Badness: 0.357387
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 390625000/387420489
Mapping: [⟨5 10 15 18 19], ⟨0 -11 -18 -21 -9]]
Optimal tuning (CTE): ~8019/7000 = 1\5, ~250/243 = 45.2624
Optimal ET sequence: 80, 185c, 265, 610de, 875cde
Badness: 0.103496