Quartonic family
The quartonic family of temperaments tempers out the quartonic comma, [3 -18 11⟩ = 390625000/387420489.
Quartonic
The name "quartonic" means quarter-tone, which is the generator of this temperament.
Subgroup: 2.3.5
Comma list: 390625000/387420489
Mapping: [⟨1 2 3], ⟨0 -11 -18]]
Optimal tuning (CTE): 2 = 1\1, ~250/243 = 45.2368
Optimal ET sequence: 26, 27, 53, 239, 292, 345, 398, 451
Badness: 0.117250
Overview to extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at.
- 1728/1715 or 4000/3969 gives septimal quartonic, with interpretation of the generator ~36/35. It also tempers out 4375/4374.
- 10976/10935 gives yarman I (80 & 159) and slices the quartonic generator in three.
- 5359375/5308416 gives yarman II (79 & 159) and slices the quartonic generator in three.
- 2401/2400 gives tertiseptisix (27 & 212) with generator ~875/729, three of them give ~12/7, and four give ~250/243 with octave reduction.
- 250047/250000 gives triquart (27 & 159) with 1/3-octave period.
- 390625/388962 or 4802000/4782969 gives quartiquart (80 & 212) with 1/4-octave period.
- 16875/16807 gives quintiquart (80 & 265) with 1/5-octave period.
Septimal quartonic
Subgroup: 2.3.5.7
Comma list: 1728/1715, 4000/3969
Mapping: [⟨1 2 3 3], ⟨0 -11 -18 -5]]
Wedgie: ⟨⟨ 11 18 5 3 -23 -39 ]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.2652
Optimal ET sequence: 26, 27, 53, 80, 133d, 186d, 319dd
Badness: 0.042632
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 540/539, 2200/2187
Mapping: [⟨1 2 3 3 5], ⟨0 -11 -18 -5 -41]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.1674
Optimal ET sequence: 26e, 27e, 53, 80
Badness: 0.034031
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 176/175, 325/324, 540/539
Mapping: [⟨1 2 3 3 5 4], ⟨0 -11 -18 -5 -41 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.1632
Optimal ET sequence: 26e, 27e, 53, 80, 133d, 186d
Badness: 0.023875
Quarto
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/242, 864/847
Mapping: [⟨1 2 3 3 4], ⟨0 -11 -18 -5 -14]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.4022
Optimal ET sequence: 26, 53e, 132ee
Badness: 0.041786
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 78/77, 100/99, 144/143, 245/242
Mapping: [⟨1 2 3 3 4 4], ⟨0 -11 -18 -5 -14 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 45.3857
Optimal ET sequence: 26, 53e, 132ee
Badness: 0.027692
Quartz
Subgroup: 2.3.5.7.11
Comma list: 99/98, 385/384, 4000/3969
Mapping: [⟨1 2 3 3 3], ⟨0 -11 -18 -5 12]]
Optimal tuning (CTE): ~2 = 1\1, ~33/32 = 45.3313
Badness: 0.053285
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 169/168, 275/273, 385/384
Mapping: [⟨1 2 3 3 3 4], ⟨0 -11 -18 -5 12 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~33/32 = 45.3168
Badness: 0.028818
Biquartonic
Subgroup: 2.3.5.7.11
Comma list: 1728/1715, 2420/2401, 2560/2541
Mapping: [⟨2 4 6 6 7], ⟨0 -11 -18 -5 -1]]
Optimal tuning (CTE): ~99/70 = 1\2, ~36/35 = 45.2678
Optimal ET sequence: 26, 54c, 80, 106
Badness: 0.060737
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 364/363, 640/637
Mapping: [⟨2 4 6 6 7 8], ⟨0 -11 -18 -5 -1 -8]]
Optimal tuning (CTE): ~55/39 = 1\2, ~40/39 = 45.2544
Optimal ET sequence: 26, 54c, 80, 106
Badness: 0.039891
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 289/288, 325/324, 544/539
Mapping: [⟨2 4 6 6 7 8 9], ⟨0 -11 -18 -5 -1 -8 -11]]
Optimal tuning (CTE): ~17/12 = 1\2, ~34/33 = 45.2397
Optimal ET sequence: 26, 54c, 80, 106
Badness: 0.028112
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 169/168, 221/220, 289/288, 325/324, 544/539, 400/399
Mapping: [⟨2 4 6 6 7 8 9 10], ⟨0 -11 -18 -5 -1 -8 -11 -20]]
Optimal tuning (CTE): ~17/12 = 1\2, ~39/38 = 45.222
Optimal ET sequence: 26, 54ch, 80, 106
Badness: 0.0213
Yarm
Subgroup: 2.3.5.7.11
Comma list: 1331/1323, 1728/1715, 4000/3969
Mapping: [⟨1 2 3 3 4], ⟨0 -33 -54 -15 -43]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0880
Optimal ET sequence: 79, 80, 159d
Badness: 0.099950
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 640/637, 1331/1323
Mapping: [⟨1 2 3 3 4 4], ⟨0 -33 -54 -15 -43 -24]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0842
Optimal ET sequence: 79, 80, 159d
Badness: 0.061645
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 325/324, 561/560, 640/637, 850/847
Mapping: [⟨1 2 3 3 4 4 4], ⟨0 -33 -54 -15 -43 -24 7]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0840
Optimal ET sequence: 79, 80, 159d
Badness: 0.046718
Yarman I
Subgroup: 2.3.5.7
Comma list: 10976/10935, 244140625/243045684
Mapping: [⟨1 2 3 4], ⟨0 -33 -54 -95]]
Wedgie: ⟨⟨ 33 54 95 9 58 69 ]]
Optimal tuning (CTE): ~2 = 1\1, ~126/125 = 15.0714
Optimal ET sequence: 79d, 80, 159, 239, 398, 637
Badness: 0.193315
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 10976/10935
Mapping: [⟨1 2 3 4 4], ⟨0 -33 -54 -95 -43]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0724
Optimal ET sequence: 79d, 80, 159, 239, 398, 637, 1035bd
Badness: 0.049170
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4], ⟨0 -33 -54 -95 -43 -24]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0707
Optimal ET sequence: 79d, 80, 159, 239, 398f, 637ff
Badness: 0.040929
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4 4], ⟨0 -33 -54 -95 -43 -24 7]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0706
Optimal ET sequence: 79d, 80, 159, 239, 398f, 637ff
Badness: 0.031015
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 325/324, 361/360, 364/363, 595/594, 969/968, 1001/1000
Mapping: [⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0683
Optimal ET sequence: 79dh, 80, 159, 239, 637ffh
Badness: 0.023193
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 325/324, 361/360, 364/363, 460/459, 507/506, 529/528, 760/759
Mapping: [⟨1 2 3 4 4 4 4 5 5], ⟨0 -33 -54 -95 -43 -24 7 -60 -38]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0676
Optimal ET sequence: 79dh, 80, 159, 239, 637ffhi
Badness: 0.017682
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 325/324, 361/360, 364/363, 406/405, 460/459, 494/493, 507/506, 529/528
Mapping: [⟨1 2 3 4 4 4 4 5 5 6], ⟨0 -33 -54 -95 -43 -24 7 -60 -38 -91]]
Optimal tuning (CTE): ~2 = 1\1, ~91/90 = 15.0667
Optimal ET sequence: 79dhj, 80, 159, 239
Badness: 0.014289
Yarman II
Subgroup: 2.3.5.7
Comma list: 5359375/5308416, 390625000/387420489
Mapping: [⟨1 2 3 2], ⟨0 -33 -54 64]]
Wedgie: ⟨⟨ 33 54 -64 9 -194 -300 ]]
Optimal tuning (CTE): ~2 = 1\1, ~875/864 = 15.0995
Badness: 0.655487
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 4000/3993, 78121827/77948684
Mapping: [⟨1 2 3 2 4], ⟨0 -33 -54 64 -43]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0982
Badness: 0.143477
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 1575/1573, 85683/85184
Mapping: [⟨1 2 3 2 4 4], ⟨0 -33 -54 64 -43 -24]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0952
Badness: 0.068150
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913
Mapping: [⟨1 2 3 2 4 4 4], ⟨0 -33 -54 64 -43 -24 7]]
Optimal tuning (CTE): ~2 = 1\1, ~100/99 = 15.0950
Badness: 0.051019
Tertiseptisix
Subgroup: 2.3.5.7
Comma list: 2401/2400, 390625000/387420489
Mapping: [⟨1 13 21 15], ⟨0 -44 -72 -47]]
Wedgie: ⟨⟨ 44 72 47 12 -49 -93 ]]
Optimal tuning (CTE): ~2 = 1\1, ~875/729 = 311.308
Optimal ET sequence: 27, 131bccd, 158cd, 185c, 212, 239, 451
Badness: 0.155952
Triquart
Subgroup: 2.3.5.7
Comma list: 117649/116640, 250047/250000
Mapping: [⟨3 6 9 10], ⟨0 -11 -18 -14]]
Wedgie: ⟨⟨ 33 54 42 9 -26 -54 ]]
Optimal tuning (CTE): ~63/50 = 1\3, ~250/243 = 45.2083
Optimal ET sequence: 27, 105cd, 132d, 159, 186, 345d
Badness: 0.170062
Quartiquart
Subgroup: 2.3.5.7
Comma list: 390625/388962, 4802000/4782969
Mapping: [⟨4 8 12 15], ⟨0 -11 -18 -25]]
Wedgie: ⟨⟨ 44 72 100 12 35 30 ]]
Optimal tuning (CTE): ~25/21 = 1\4, ~250/243 = 45.2411
Optimal ET sequence: 80, 132d, 212, 292, 504
Badness: 0.199116
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 6250/6237, 14641/14580
Mapping: [⟨4 8 12 15 17], ⟨0 -11 -18 -25 -21]]
Optimal tuning (CTE): ~25/21 = 1\4, ~77/75 = 45.2303
Optimal ET sequence: 80, 132de, 212, 292, 504e
Badness: 0.062450
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 1001/1000, 1375/1372, 10648/10647
Mapping: [⟨4 8 12 15 17 16], ⟨0 -11 -18 -25 -21 -8]]
Optimal tuning (CTE): ~25/21 = 1\4, ~40/39 = 45.2243
Optimal ET sequence: 80, 132de, 212
Badness: 0.045028
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 289/288, 325/324, 561/560, 1001/1000, 10648/10647
Mapping: [⟨4 8 12 15 17 16 18], ⟨0 -11 -18 -25 -21 -8 -11]]
Optimal tuning (CTE): ~25/21 = 1\4, ~40/39 = 45.218
Optimal ET sequence: 52cdeg, 80, 132deg, 212g
Badness: 0.0312
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 289/288, 325/324, 361/360, 561/560, 1001/1000, 1331/1330
Mapping: [⟨4 8 12 15 17 16 18 20], ⟨0 -11 -18 -25 -21 -8 -11 20]]
Optimal tuning (CTE): ~25/21 = 1\4, ~39/38 = 45.210
Optimal ET sequence: 52cdegh, 80, 132degh, 212gh
Badness: 0.0224
Quintiquart
Subgroup: 2.3.5.7
Comma list: 16875/16807, 390625000/387420489
Mapping: [⟨5 10 15 18], ⟨0 -11 -18 -21]]
Wedgie: ⟨⟨ 55 90 105 15 12 -9 ]]
Optimal tuning (CTE): ~35721/31250 = 1\5, ~250/243 = 45.2563
Optimal ET sequence: 80, 185c, 265, 610d, 875cd
Badness: 0.357387
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 390625000/387420489
Mapping: [⟨5 10 15 18 19], ⟨0 -11 -18 -21 -9]]
Optimal tuning (CTE): ~8019/7000 = 1\5, ~250/243 = 45.2624
Optimal ET sequence: 80, 185c, 265, 610de, 875cde
Badness: 0.103496