22L 5s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLLsLLLLsLLLLLsLLLLsLLLLs
sLLLLsLLLLsLLLLLsLLLLsLLLLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
11\27 to 9\22 (488.9¢ to 490.9¢)
Dark
13\22 to 16\27 (709.1¢ to 711.1¢)
TAMNAMS information
Descends from
5L 2s (diatonic)
Ancestor's step ratio range
4:1 to 5:1
Related MOS scales
Parent
5L 17s
Sister
5L 22s
Daughters
27L 22s, 22L 27s
Neutralized
17L 10s
2-Flought
49L 5s, 22L 32s
Equal tunings
Equalized (L:s = 1:1)
11\27 (488.9¢)
Supersoft (L:s = 4:3)
42\103 (489.3¢)
Soft (L:s = 3:2)
31\76 (489.5¢)
Semisoft (L:s = 5:3)
51\125 (489.6¢)
Basic (L:s = 2:1)
20\49 (489.8¢)
Semihard (L:s = 5:2)
49\120 (490.0¢)
Hard (L:s = 3:1)
29\71 (490.1¢)
Superhard (L:s = 4:1)
38\93 (490.3¢)
Collapsed (L:s = 1:0)
9\22 (490.9¢)
↖ 21L 4s | ↑ 22L 4s | 23L 4s ↗ |
← 21L 5s | 22L 5s | 23L 5s → |
↙ 21L 6s | ↓ 22L 6s | 23L 6s ↘ |
┌╥╥╥╥╥┬╥╥╥╥┬╥╥╥╥╥┬╥╥╥╥┬╥╥╥╥┬┐ │║║║║║│║║║║│║║║║║│║║║║│║║║║││ │││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLsLLLLsLLLLLsLLLLsLLLLL
22L 5s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 22 large steps and 5 small steps, repeating every octave. 22L 5s is related to 5L 2s, expanding it by 20 tones. Generators that produce this scale range from 488.9¢ to 490.9¢, or from 709.1¢ to 711.1¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 44.4¢ |
Major 1-mosstep | M1ms | L | 44.4¢ to 54.5¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 54.5¢ to 88.9¢ |
Major 2-mosstep | M2ms | 2L | 88.9¢ to 109.1¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 109.1¢ to 133.3¢ |
Major 3-mosstep | M3ms | 3L | 133.3¢ to 163.6¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 163.6¢ to 177.8¢ |
Major 4-mosstep | M4ms | 4L | 177.8¢ to 218.2¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 218.2¢ to 222.2¢ |
Major 5-mosstep | M5ms | 5L | 222.2¢ to 272.7¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 218.2¢ to 266.7¢ |
Major 6-mosstep | M6ms | 5L + s | 266.7¢ to 272.7¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 5L + 2s | 272.7¢ to 311.1¢ |
Major 7-mosstep | M7ms | 6L + s | 311.1¢ to 327.3¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 327.3¢ to 355.6¢ |
Major 8-mosstep | M8ms | 7L + s | 355.6¢ to 381.8¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 7L + 2s | 381.8¢ to 400.0¢ |
Major 9-mosstep | M9ms | 8L + s | 400.0¢ to 436.4¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 8L + 2s | 436.4¢ to 444.4¢ |
Major 10-mosstep | M10ms | 9L + s | 444.4¢ to 490.9¢ | |
11-mosstep | Diminished 11-mosstep | d11ms | 8L + 3s | 436.4¢ to 488.9¢ |
Perfect 11-mosstep | P11ms | 9L + 2s | 488.9¢ to 490.9¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 9L + 3s | 490.9¢ to 533.3¢ |
Major 12-mosstep | M12ms | 10L + 2s | 533.3¢ to 545.5¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 10L + 3s | 545.5¢ to 577.8¢ |
Major 13-mosstep | M13ms | 11L + 2s | 577.8¢ to 600.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 11L + 3s | 600.0¢ to 622.2¢ |
Major 14-mosstep | M14ms | 12L + 2s | 622.2¢ to 654.5¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 12L + 3s | 654.5¢ to 666.7¢ |
Major 15-mosstep | M15ms | 13L + 2s | 666.7¢ to 709.1¢ | |
16-mosstep | Perfect 16-mosstep | P16ms | 13L + 3s | 709.1¢ to 711.1¢ |
Augmented 16-mosstep | A16ms | 14L + 2s | 711.1¢ to 763.6¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 13L + 4s | 709.1¢ to 755.6¢ |
Major 17-mosstep | M17ms | 14L + 3s | 755.6¢ to 763.6¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 14L + 4s | 763.6¢ to 800.0¢ |
Major 18-mosstep | M18ms | 15L + 3s | 800.0¢ to 818.2¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 15L + 4s | 818.2¢ to 844.4¢ |
Major 19-mosstep | M19ms | 16L + 3s | 844.4¢ to 872.7¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 16L + 4s | 872.7¢ to 888.9¢ |
Major 20-mosstep | M20ms | 17L + 3s | 888.9¢ to 927.3¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 17L + 4s | 927.3¢ to 933.3¢ |
Major 21-mosstep | M21ms | 18L + 3s | 933.3¢ to 981.8¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 17L + 5s | 927.3¢ to 977.8¢ |
Major 22-mosstep | M22ms | 18L + 4s | 977.8¢ to 981.8¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 18L + 5s | 981.8¢ to 1022.2¢ |
Major 23-mosstep | M23ms | 19L + 4s | 1022.2¢ to 1036.4¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 19L + 5s | 1036.4¢ to 1066.7¢ |
Major 24-mosstep | M24ms | 20L + 4s | 1066.7¢ to 1090.9¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 20L + 5s | 1090.9¢ to 1111.1¢ |
Major 25-mosstep | M25ms | 21L + 4s | 1111.1¢ to 1145.5¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 21L + 5s | 1145.5¢ to 1155.6¢ |
Major 26-mosstep | M26ms | 22L + 4s | 1155.6¢ to 1200.0¢ | |
27-mosstep | Perfect 27-mosstep | P27ms | 22L + 5s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
11\27 | 488.889 | 711.111 | 1:1 | 1.000 | Equalized 22L 5s | |||||
64\157 | 489.172 | 710.828 | 6:5 | 1.200 | ||||||
53\130 | 489.231 | 710.769 | 5:4 | 1.250 | ||||||
95\233 | 489.270 | 710.730 | 9:7 | 1.286 | ||||||
42\103 | 489.320 | 710.680 | 4:3 | 1.333 | Supersoft 22L 5s | |||||
115\282 | 489.362 | 710.638 | 11:8 | 1.375 | ||||||
73\179 | 489.385 | 710.615 | 7:5 | 1.400 | ||||||
104\255 | 489.412 | 710.588 | 10:7 | 1.429 | ||||||
31\76 | 489.474 | 710.526 | 3:2 | 1.500 | Soft 22L 5s | |||||
113\277 | 489.531 | 710.469 | 11:7 | 1.571 | ||||||
82\201 | 489.552 | 710.448 | 8:5 | 1.600 | ||||||
133\326 | 489.571 | 710.429 | 13:8 | 1.625 | ||||||
51\125 | 489.600 | 710.400 | 5:3 | 1.667 | Semisoft 22L 5s | |||||
122\299 | 489.632 | 710.368 | 12:7 | 1.714 | ||||||
71\174 | 489.655 | 710.345 | 7:4 | 1.750 | ||||||
91\223 | 489.686 | 710.314 | 9:5 | 1.800 | ||||||
20\49 | 489.796 | 710.204 | 2:1 | 2.000 | Basic 22L 5s Scales with tunings softer than this are proper | |||||
89\218 | 489.908 | 710.092 | 9:4 | 2.250 | ||||||
69\169 | 489.941 | 710.059 | 7:3 | 2.333 | ||||||
118\289 | 489.965 | 710.035 | 12:5 | 2.400 | ||||||
49\120 | 490.000 | 710.000 | 5:2 | 2.500 | Semihard 22L 5s | |||||
127\311 | 490.032 | 709.968 | 13:5 | 2.600 | ||||||
78\191 | 490.052 | 709.948 | 8:3 | 2.667 | ||||||
107\262 | 490.076 | 709.924 | 11:4 | 2.750 | ||||||
29\71 | 490.141 | 709.859 | 3:1 | 3.000 | Hard 22L 5s | |||||
96\235 | 490.213 | 709.787 | 10:3 | 3.333 | ||||||
67\164 | 490.244 | 709.756 | 7:2 | 3.500 | ||||||
105\257 | 490.272 | 709.728 | 11:3 | 3.667 | ||||||
38\93 | 490.323 | 709.677 | 4:1 | 4.000 | Superhard 22L 5s | |||||
85\208 | 490.385 | 709.615 | 9:2 | 4.500 | ||||||
47\115 | 490.435 | 709.565 | 5:1 | 5.000 | ||||||
56\137 | 490.511 | 709.489 | 6:1 | 6.000 | ||||||
9\22 | 490.909 | 709.091 | 1:0 | → ∞ | Collapsed 22L 5s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |