Table of 198edo intervals

From Xenharmonic Wiki
Revision as of 12:20, 9 November 2020 by FloraC (talk | contribs) (4 decimal places should be enough)
Jump to navigation Jump to search
This article is a work in progress.

This table of 198edo intervals assumes 13-limit patent val 198 314 460 556 685 733].

Intervals highlighted in bold are prime harmonics or subharmonics. Intervals that differ from their assigned steps by more than 50% or intervals with odd limit over 729 are not shown. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank.

# Cents 5 limit 7 limit 11 limit 13 limit
0 0.0000 1/1
1 6.0606 385/384, 441/440, 540/539 196/195, 325/324, 351/350, 364/363
2 12.1212 ? 126/125, 245/243 121/120 144/143, 169/168
3 18.1818 99/98, 100/99 ?
4 24.2424 81/80 64/63 ? 66/65, 78/77
5 30.3030 55/54, 56/55 ?
6 36.3636 ? 49/48, 50/49 ? ?
7 42.4242 ? 40/39
8 48.4848 ? 36/35 ? ?
9 54.5455 33/32 65/63
10 60.6061 ? 28/27 ? ?
11 66.6667 80/77 26/25, 27/26
12 72.7273 25/24 ? 126/121 ?
13 78.7879 22/21 ?
14 84.8485 ? 21/20 ? ?
15 90.9091 ? 96/91
16 96.9697 ? 200/189 128/121 ?
17 103.0303 35/33 ?
18 109.0909 16/15 ? ? ?
19 115.1515 ? ?
20 121.2121 ? 15/14 ? ?
21 127.2727 ? 14/13
22 133.3333 27/25 175/162 ? ?
23 139.3939 ? 13/12
24 145.4545 ? 49/45, 160/147 ? ?
25 151.5152 12/11 ?
26 157.5758 ? 35/32 ? ?
27 163.6364 11/10 ?
28 169.6970 ? 54/49 ? ?
29 175.7576 ? ?
30 181.8182 10/9 ? ? ?
31 187.8788 ? ?
32 193.9394 ? 28/25 121/108 ?
33 200.0000 ? 91/81
34 206.0606 9/8 ? ? 44/39
35 212.1212 ? ?
36 218.1818 ? ? ? ?
37 224.2424 ? 91/80
38 230.3030 ? 8/7 ? ?
39 236.3636 55/48 ?
40 242.4242 ? 280/243 ? ?
41 248.4848 ? 15/13
42 254.5455 ? 81/70 140/121 ?
43 260.6061 64/55 ?
44 266.6667 ? 7/6 ? ?
45 272.7273 ? ?
46 278.7879 ? ? ? ?
47 284.8485 33/28 ?
48 290.9091 ? 189/160 ? 13/11
49 296.9697 ? ?
50 303.0303 ? 25/21 144/121 ?
51 309.0909 ? ?
52 315.1515 6/5 ? ? ?
53 321.2121 ? ?
54 327.2727 ? ? ? ?
55 333.3333 ? 63/52
56 339.3939 ? ? ? ?
57 345.4545 11/9 39/32
58 351.5152 ? 49/40, 60/49 ? ?
59 357.5757 27/22 16/13
60 363.6364 ? ? ? ?
61 369.6970 ? 26/21
62 375.7576 ? ? ? ?
63 381.8182 ? ?
64 387.8788 5/4 ? ? ?
65 393.9394 ? ?
66 400.0000 ? 63/50 121/96 ?
67 406.0606 ? ?
68 412.1212 ? 80/63 ? 33/26
69 418.1818 14/11 ?
70 424.2424 ? ? ? ?
71 430.3030 ? ?
72 436.3636 ? 9/7 ? ?
73 442.4242 128/99 ?
74 448.4848 ? 35/27 ? ?
75 454.5455 ? 13/10
76 460.6061 ? ? ? ?
77 466.6667 ? ?
78 472.7273 ? 21/16 ? ?
79 478.7879 ? ?
80 484.8485 ? ? ? ?
81 490.9091 ? ?
82 496.9697 4/3 ? ? ?
83 503.0303 ? ?
84 509.0909 ? ? ? ?
85 515.1515 ? ?
86 521.2121 27/20 ? ? ?
87 527.2727 ? ?
88 533.3333 ? 49/36 ? ?
89 539.3939 15/11 ?
90 545.4545 ? 48/35 ? ?
91 551.5152 11/8 ?
92 557.5758 ? 441/320 ? ?
93 563.6364 ? 18/13
94 569.6970 25/18 ? ? ?
95 575.7576 ? ?
96 581.8182 ? 7/5 ? ?
97 587.8788 ? ?
98 593.9394 ? ? ? ?
99 600.0000 99/70, 140/99 ?
100 606.0606 ? ? ? ?
101 612.1212 ? ?
102 618.1818 ? 10/7 ? ?
103 624.2424 ? ?
104 630.3030 36/25 ? ? ?
105 636.3636 ? 13/9
106 642.4242 ? ? ? ?
107 648.4848 16/11 ?
108 654.5455 ? 640/441 ? ?
109 660.6061 22/15 ?
110 666.6667 ? ? ? ?
111 672.7273 ? ?
112 678.7879 40/27 ? ? ?
113 684.8485 ? ?
114 690.9091 ? ? ? ?
115 696.9697 ? ?
116 703.0303 3/2 ? ? ?
117 709.0909 ? ?
118 715.1515 ? ? ? ?
119 721.2121 ? ?
120 727.2727 32/21 ? ?
121 733.3333 ? ?
122 739.3939 ? ? ? ?
123 745.4545 ? 20/13
124 751.5152 ? 54/35 ? ?
125 757.5758 ? ?
126 763.6364 ? 14/9 ? ?
127 769.6970 ? ?
128 775.7576 ? ? ? ?
129 781.8182 11/7 ?
130 787.8788 ? 63/40 ? 52/33
131 793.9394 ? ?
132 800.0000 ? 100/63 192/121 ?
133 806.0606 ? ?
134 812.1212 8/5 ? ? ?
135 818.1818 ? ?
136 824.2424 ? ? ? ?
137 830.3030 ? 21/13
138 836.3636 ? ? ? ?
139 842.4242 44/27 13/8
140 848.4848 ? 49/30, 80/49 ? ?
141 854.5455 18/11 64/39
142 860.6061 ? ? ? ?
143 866.6667 ? 104/63
144 872.7273 ? ? ? ?
145 878.7879 ? ?
146 884.8485 5/3 ? ? ?
147 890.9091 ? ?
148 896.9697 ? 42/25 ? ?
149 903.0303 ? ?
150 909.0909 ? 320/189 ? 22/13
151 915.1515 ? ?
152 921.2121 ? ? ? ?
153 927.2727 ? ?
154 933.3333 ? 12/7 ? ?
155 939.3939 55/32 ?
156 945.4545 ? 140/81 121/70 ?
157 951.5152 ? 26/15
158 957.5758 ? 243/140 ? ?
159 963.6364 96/55 ?
160 969.6970 ? 7/4 ? ?
161 975.7576 ? 160/91
162 981.8182 ? ? ? ?
163 987.8788 ? ?
164 993.9394 16/9 ? ? 39/22
165 1000.0000 ? 162/91
166 1006.0606 ? ? ? ?
167 1012.1212 ? ?
168 1018.1818 9/5 ? ? ?
169 1024.2424 ? ?
170 1030.3030 ? ? ? ?
171 1036.3636 20/11 ?
172 1042.4242 ? ? ? ?
173 1048.4848 11/6 ?
174 1054.5455 ? ? ? ?
175 1060.6061 ? 24/13
176 1066.6667 50/27 ? ? ?
177 1072.7273 ? 13/7
178 1078.7879 ? 28/15 ? ?
179 1084.8485 ? ?
180 1090.9091 15/8 ? ? ?
181 1096.9697 ? ?
182 1103.0303 ? ? ? ?
183 1109.0909 ? ?
184 1115.1515 ? 40/21 ? ?
185 1121.2121 21/11 ?
186 1127.2727 48/25 ? ? 121/63
187 1133.3333 ? 25/13, 52/27
188 1139.3939 ? 27/14 ? ?
189 1145.4545 64/33 126/65
190 1151.5152 ? 35/18 ? ?
191 1157.5758 ? 39/20
192 1163.6364 ? 96/49, 49/25 ? ?
193 1169.6970 108/55, 55/27 ?
194 1175.7576 160/81 63/32 ? 65/33, 77/39
195 1181.8182 196/99, 99/50 ?
196 1187.8788 ? 125/63, 486/245 240/121 143/72, 336/169
197 1193.9394 768/385, 880/441, 539/270 195/98, 648/325, 700/351, 363/182
198 1200.0000 2/1