159edo/Interval names and harmonies
159edo contains all the intervals of 53edo, however, as some of the interpretations differ due 159edo having different mappings for certain primes, those differences show up in how harmonies are constructed. It should be noted that since 159edo does a better job of representing the 2.3.11 subgroup than 24edo, some of the chords listed on the page for 24edo interval names and harmonies carry over to this page, even though the exact sets of enharmonics differ between the two systems.
Step | Cents | 5 limit | 7 limit | 11 limit | 13 limit | 17 limit | Interval Names | Notes | ||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1/1 | P1 | Perfect Unison | D | The root of any chord. | ||||
1 | 7.5471698 | 225/224 | 243/242 | 196/195, 351/350 | 256/255 | R1 | Wide Prime | D/ | Useful for slight dissonances that convey something less than satisfactory, however it can also add to the bandwidth of a sound. | |
2 | 15.0943396 | ? | 121/120, 100/99 | 144/143 | 120/119 | rK1 | Narrow Superprime | D↑\ | Useful for slight dissonances that create more noticeable tension. | |
3 | 22.6415094 | 81/80 | ? | ? | 78/77 | 85/84 | K1 | Lesser Superprime | D↑ | Useful for appoggiaturas, and acciaccaturas, and quick passing tones. |
4 | 30.1886792 | 64/63 | 56/55, 55/54 | ? | 52/51 | S1, kU1 | Greater Superprime, Narrow Inframinor Second | Dt<↓ | Useful for various types of subchromatic gestures, as well as for appoggiaturas, and acciaccaturas, and quick passing tones. | |
5 | 37.7358491 | ? | 45/44 | ? | 51/50 | um2, RkU1 | Inframinor Second, Wide Superprime | Edb>, Dt>↓ | By default, this interval is a type of paradiatonic quartertone and is used in much the same way as 24edo's own Inframinor Second. | |
6 | 45.2830189 | ? | ? | ? | 40/39 | 192/187 | kkm2, Rum2, rU1 | Wide Inframinor Second, Narrow Ultraprime | Eb↓↓, Dt<\ | This interval is particularly likely to be used as a cross between an Ultraprime and an Inframinor Second. |
7 | 52.8301887 | ? | 33/32 | ? | 34/33 | U1, rKum2 | Ultraprime, Narrow Subminor Second | Dt< | By default, this interval is a type of parachromatic quartertone and is thus used in much the same way as 24edo's own Ultraprime. | |
8 | 60.3773585 | 28/27 | ? | ? | 88/85 | sm2, Kum2, RU1 | Lesser Subminor Second, Wide Ultraprime | Eb↓\, Dt> | Although this interval can act as a leading tone, it can also act as a trienstone- that is, a third of a tone- since it's one third of the Ptolemaic Major Second. | |
9 | 67.9245283 | 25/24 | ? | ? | 26/25, 27/26 | ? | km2, kkA1 | Greater Subminor Second, Diptolemaic Augmented Prime | Eb↓, D#↓↓ | Although this interval frequently acts as the Diptolemaic Chroma, it can also act as a trienstone- that is, a third of a tone- since it's one third of the Pyth Major Second. |
10 | 75.4716981 | ? | ? | ? | 160/153 | |||||
11 | 83.0188679 | 21/20 | 22/21 | ? | ? | |||||
12 | 90.5660377 | 256/243, 135/128 | ? | ? | ? | ? | ||||
13 | 98.1132075 | ? | 128/121 | 55/52 | 18/17 | |||||
14 | 105.6603774 | ? | ? | ? | 17/16 | |||||
15 | 113.2075472 | 16/15 | ? | ? | ? | ? | ||||
16 | 120.7547170 | 15/14 | 275/256 | ? | ? | |||||
17 | 128.3018868 | ? | ? | 14/13 | 128/119 | |||||
18 | 135.8490566 | 27/25 | ? | ? | 13/12 | ? | ||||
19 | 143.3962264 | ? | 88/81 | ? | ? | |||||
20 | 150.9433962 | ? | 12/11 | ? | ? | |||||
21 | 158.4905660 | ? | ? | ? | 128/117 | 561/512, 1024/935 | ||||
22 | 166.0377358 | ? | 11/10 | ? | ? | |||||
23 | 173.5849057 | 567/512 | 243/220 | ? | 425/384 | |||||
24 | 181.1320755 | 10/9 | ? | 256/231 | ? | ? | ||||
25 | 188.6792458 | ? | ? | 143/128 | 512/459 | |||||
26 | 196.2264151 | 28/25 | ? | ? | ? | |||||
27 | 203.7735849 | 9/8 | ? | ? | ? | ? | ||||
28 | 211.3207547 | ? | ? | 44/39 | 289/256 | |||||
29 | 218.8679245 | ? | ? | ? | 17/15 | |||||
30 | 226.4150943 | 256/225 | ? | 154/135 | ? | ? | ||||
31 | 233.9622642 | 8/7 | 55/48 | ? | ? | |||||
32 | 241.5094340 | ? | 1024/891 | ? | ? | |||||
33 | 249.0566038 | ? | ? | ? | 15/13 | ? | ||||
34 | 256.6037736 | ? | 297/256 | ? | ? | |||||
35 | 264.1509434 | 7/6 | 64/55 | ? | ? | |||||
36 | 271.6981132 | 75/64 | ? | ? | ? | ? | ||||
37 | 279.2452830 | ? | ? | ? | 20/17 | |||||
38 | 286.7924528 | ? | 33/28 | 13/11 | 85/72 | |||||
39 | 294.3396226 | 32/27 | ? | ? | ? | ? | ||||
40 | 301.8867925 | 25/21 | 144/121 | ? | ? | |||||
41 | 309.4339622 | ? | ? | 512/429 | 153/128 | |||||
42 | 316.9811321 | 6/5 | ? | 77/64 | ? | ? | ||||
43 | 324.5283019 | 135/112 | ? | ? | 512/425 | |||||
44 | 332.0754717 | ? | 40/33, 121/100 | ? | 144/119, 165/136 | |||||
45 | 339.6226415 | ? | ? | ? | 39/32 | 17/14 | ||||
46 | 347.1698113 | ? | 11/9 | ? | ? | |||||
47 | 354.7169811 | ? | 27/22 | ? | ? | |||||
48 | 362.2641509 | ? | ? | ? | 16/13 | 21/17 | ||||
49 | 369.8113208 | ? | ? | ? | 68/55 | |||||
50 | 377.3584906 | 56/45 | 1024/825 | ? | ? | |||||
51 | 384.9056604 | 5/4 | ? | 96/77 | ? | ? | ||||
52 | 392.4528302 | ? | ? | ? | 64/51 | |||||
53 | 400 | 63/50 | 121/96 | ? | ? | |||||
54 | 407.5471698 | 81/64 | ? | ? | ? | ? | ||||
55 | 415.0943396 | ? | 14/11 | 33/26 | 108/85 | |||||
56 | 422.6415094 | ? | ? | 143/112 | 51/40 | |||||
57 | 430.1886792 | 32/25 | ? | ? | ? | ? | ||||
58 | 437.7358491 | 9/7 | 165/128 | ? | ? | |||||
59 | 445.2830189 | ? | 128/99 | ? | 22/17 | |||||
60 | 452.8301887 | ? | ? | ? | 13/10 | ? | ||||
61 | 460.3773585 | ? | 176/135 | ? | ? | |||||
62 | 467.9245283 | 21/16 | 55/42, 72/55 | ? | 17/13 | |||||
63 | 475.4716981 | 320/243, 675/512 | ? | ? | ? | ? | ||||
64 | 483.0188679 | ? | 33/25 | ? | 45/34 | |||||
65 | 490.5660377 | ? | ? | ? | 85/64 | |||||
66 | 498.1132075 | 4/3 | ? | ? | ? | ? | ||||
67 | 505.6603774 | 75/56 | 162/121 | ? | ? | |||||
68 | 513.2075472 | ? | 121/90 | ? | ? | |||||
69 | 520.7547170 | 27/20 | ? | ? | 104/77 | ? | ||||
70 | 528.3018868 | ? | 110/81 | ? | ? | |||||
71 | 535.8490566 | ? | 15/11 | ? | ? | |||||
72 | 543.3962264 | ? | ? | ? | 160/117 | 256/187 | ||||
73 | 550.9433962 | ? | 11/8 | ? | ? | |||||
74 | 558.4905660 | 112/81 | ? | ? | ? | |||||
75 | 566.0377358 | 25/18 | ? | ? | 18/13 | ? | ||||
76 | 573.5849057 | ? | ? | ? | 357/256 | |||||
77 | 581.1320755 | 7/5 | ? | ? | ? | |||||
78 | 588.6792458 | 1024/729, 45/32 | ? | ? | ? | ? | ||||
79 | 596.2264151 | ? | ? | ? | 24/17 | |||||
80 | 603.7735849 | ? | ? | ? | 17/12 | |||||
81 | 611.3207547 | 729/512, 64/45 | ? | ? | ? | ? | ||||
82 | 618.8679245 | 10/7 | ? | ? | ? | |||||
83 | 626.4150943 | ? | ? | ? | 512/357 | |||||
84 | 633.9622642 | 36/25 | ? | ? | 13/9 | ? | ||||
85 | 641.5094340 | 81/56 | ? | ? | ? | |||||
86 | 649.0566038 | ? | 16/11 | ? | ? | |||||
87 | 656.6037736 | ? | ? | ? | 117/80 | 187/128 | ||||
88 | 664.1509434 | ? | 22/15 | ? | ? | |||||
89 | 671.6981132 | ? | 81/55 | ? | ? | |||||
90 | 679.2452830 | 40/27 | ? | ? | 77/52 | ? | ||||
91 | 686.7924528 | ? | 180/121 | ? | ? | |||||
92 | 694.3396226 | 112/75 | 121/81 | ? | ? | |||||
93 | 701.8867925 | 3/2 | ? | ? | ? | ? | ||||
94 | 709.4339622 | ? | ? | ? | 128/85 | |||||
95 | 716.9811321 | ? | 50/33 | ? | 68/45 | |||||
96 | 724.5283019 | 243/160, 1024/675 | ? | ? | ? | ? | ||||
97 | 732.0754717 | 32/21 | 84/55, 55/36 | ? | 26/17 | |||||
98 | 739.6226415 | ? | 135/88 | ? | ? | |||||
99 | 747.1698113 | ? | ? | ? | 20/13 | ? | ||||
100 | 754.7169811 | ? | 99/64 | ? | 17/11 | |||||
101 | 762.2641509 | 14/9 | 256/165 | ? | ? | |||||
102 | 769.8113208 | 25/16 | ? | ? | ? | ? | ||||
103 | 777.3584906 | ? | ? | 224/143 | 80/51 | |||||
104 | 784.9056604 | ? | 11/7 | 52/33 | 85/54 | |||||
105 | 792.4528302 | 128/81 | ? | ? | ? | ? | ||||
106 | 800 | 100/63 | 192/121 | ? | ? | |||||
107 | 807.5471698 | ? | ? | ? | 51/32 | |||||
108 | 815.0943396 | 8/5 | ? | 77/48 | ? | ? | ||||
109 | 822.6415094 | 45/28 | 825/512 | ? | ? | |||||
110 | 830.1886792 | ? | ? | ? | 55/34 | |||||
111 | 837.7358491 | ? | ? | ? | 13/8 | 34/21 | ||||
112 | 845.2830189 | ? | 44/27 | ? | ? | |||||
113 | 852.8301887 | ? | 18/11 | ? | ? | |||||
114 | 860.3773585 | ? | ? | ? | 64/39 | 28/17 | ||||
115 | 867.9245283 | ? | 33/20, 200/121 | ? | 119/72, 272/165 | |||||
116 | 875.4716981 | 224/135 | ? | ? | 425/256 | |||||
117 | 883.0188679 | 5/3 | ? | 128/77 | ? | ? | ||||
118 | 890.5660377 | ? | ? | 429/256 | 256/153 | |||||
119 | 898.1132075 | 42/25 | 121/72 | ? | ? | |||||
120 | 905.6603774 | 27/16 | ? | ? | ? | ? | ||||
121 | 913.2075472 | ? | 56/33 | 22/13 | 144/85 | |||||
122 | 920.7547170 | ? | ? | ? | 17/10 | |||||
123 | 928.3018868 | 128/75 | ? | ? | ? | ? | ||||
124 | 935.8490566 | 12/7 | 55/32 | ? | ? | |||||
125 | 943.3962264 | ? | 512/297 | ? | ? | |||||
126 | 950.9433962 | ? | ? | ? | 26/15 | ? | ||||
127 | 958.4905660 | ? | 891/512 | ? | ? | |||||
128 | 966.0377358 | 7/4 | 96/55 | ? | ? | |||||
129 | 973.5849057 | 225/128 | ? | 135/77 | ? | ? | ||||
130 | 981.1320755 | ? | ? | ? | 30/17 | |||||
131 | 988.6792458 | ? | ? | 39/22 | 512/289 | |||||
132 | 996.2264151 | 16/9 | ? | ? | ? | ? | ||||
133 | 1003.7735849 | 25/14 | ? | ? | ? | |||||
134 | 1011.3207547 | ? | ? | 256/143 | 459/256 | |||||
135 | 1018.8679245 | 9/5 | ? | 231/128 | ? | ? | ||||
136 | 1026.4150943 | 1024/567 | 440/243 | ? | 768/425 | |||||
137 | 1033.9622642 | ? | 20/11 | ? | ? | |||||
138 | 1041.5094340 | ? | ? | ? | 117/64 | 1024/561, 935/512 | ||||
139 | 1049.0566038 | ? | 11/6 | ? | ? | |||||
140 | 1056.6037736 | ? | 81/44 | ? | ? | |||||
141 | 1064.1509434 | 50/27 | ? | ? | 24/13 | ? | ||||
142 | 1071.6981132 | ? | ? | 13/7 | 119/64 | |||||
143 | 1079.2452830 | 28/15 | 512/275 | ? | ? | |||||
144 | 1086.7924528 | 15/8 | ? | ? | ? | ? | ||||
145 | 1094.3396226 | ? | ? | ? | 32/17 | |||||
146 | 1101.8867925 | ? | 121/64 | 104/55 | 17/9 | |||||
147 | 1109.4339622 | 243/128, 256/135 | ? | ? | ? | ? | ||||
148 | 1116.9811321 | 40/21 | 21/11 | ? | ? | |||||
149 | 1124.5283019 | ? | ? | ? | 153/80 | |||||
150 | 1132.0754717 | 48/25 | ? | ? | 25/13, 52/27 | ? | ||||
151 | 1139.6226415 | 27/14 | ? | ? | 85/44 | |||||
152 | 1147.1698113 | ? | 64/33 | ? | 33/17 | |||||
153 | 1154.7169811 | ? | ? | ? | 39/20 | 187/96 | ||||
154 | 1162.2641509 | ? | 88/45 | ? | 100/51 | |||||
155 | 1169.8113208 | 63/32 | 55/28, 108/55 | ? | 51/26 | |||||
156 | 1177.3584906 | 160/81 | ? | ? | 77/39 | 168/85 | ||||
157 | 1184.9056604 | ? | 240/121, 99/50 | 143/72 | 119/60 | |||||
158 | 1192.4528302 | 448/225 | 484/243 | 195/98, 700/351 | 255/128 | |||||
159 | 1200 | 2/1 | P8 | Perfect Octave | D | Reduplication of the root. |