Proposed names for rank-2 temperaments

Revision as of 10:20, 13 September 2021 by FloraC (talk | contribs) (Improve links and ordering)

Here is a list of some names that have been proposed for rank 2 temperaments. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and generators of the temperament for each of the prime intervals (2 3 5 etc.)

See also pergen names.

One period per octave

  • father [1 2 2], 0 -1 1]];
    • mother [1 2 2 2], 0 -1 1 2]];
    • father [1 2 2 4], 0 -1 1 -3]];
  • mavila [1 2 1], 0 -1 3]];
    • pelogic [1 2 1 1], 0 -1 3 4]];
    • armodue [1 2 1 5], 0 -1 3 -5]];
    • mavila [1 2 1 -2], 0 -1 3 11]];
    • hornbostel [1 2 1 8], 0 -1 3 -12]];
  • meantone [1 2 4], 0 -1 -4]];
    • dominant [1 2 4 2], 0 -1 -4 2]];
      • arnold [1 2 4 2 3], 0 -1 -4 2 1]];
      • dominant [1 2 4 2 1], 0 -1 -4 2 6]];
      • domineering [1 2 4 2 6], 0 -1 -4 2 -6]];
        • dominatrix [1 2 4 2 6 5], 0 -1 -4 2 -6 -3]];
    • sharptone [1 2 4 4], 0 -1 -4 -3]];
      • meanertone [1 2 4 4 3], 0 -1 -4 -3 1]];
    • flattone [1 2 4 -1], 0 -1 -4 9]];
      • flattone [1 2 4 -1 6], 0 -1 -4 9 -6]];
    • meantone [1 2 4 7], 0 -1 -4 -10]];
      • meanenneadecal [1 2 4 7 6], 0 -1 -4 -10 -6]];
      • meanpop [1 2 4 7 -2], 0 -1 -4 -10 13]];
      • meantone [1 2 4 7 11], 0 -1 -4 -10 -18]];
  • avila [1 1 -1], 0 1 6]];
  • helmholtz [1 2 -1], 0 -1 8]];
    • schism [1 2 -1 2], 0 -1 8 2]];
    • garibaldi [1 2 -1 -3], 0 -1 8 14]];
      • cassandra [1 2 -1 -3 13], 0 -1 8 14 -23]];
        • cassandra [1 2 -1 -3 13 12], 0 -1 8 14 -23 -20]];
      • andromeda [1 2 -1 -3 -4], 0 -1 8 14 18]];
        • andromeda [1 2 -1 -3 -4 -5], 0 -1 8 14 18 21]];
    • grackle [1 2 -1 -8], 0 -1 8 26]];
    • pontiac, infraschismic [1 2 -1 19], 0 -1 8 -39]];
  • superpyth [1 2 6], 0 -1 -9]];
    • superpyth [1 2 6 2], 0 -1 -9 2]];
      • superpyth [1 2 6 2 10], 0 -1 -9 2 -16]];
      • suprapyth [1 2 6 2 1], 0 -1 -9 2 6]];
  • quasisuper [1 2 -3 2], 0 -1 13 2]];
  • leapday [1 2 11 9 8 7], 0 -1 -21 -15 -11 -8]];
  • kwai [1 2 16 14], 0 -1 -33 -27]];
    • kwai [1 2 16 14 -4], 0 -1 -33 -27 18]];
  • undecental [1 2 -13 -15], 0 -1 37 43]];
  • counterschismic [1 2 21], 0 -1 -45]];
  • dicot [1 1 2], 0 2 1]];
    • dicot [1 1 2 2], 0 2 1 3]];
    • sharp [1 1 2 1], 0 2 1 6]];
  • mohajira, semififths [1 1 0 6], 0 2 8 -11]];
    • mohajira 1 1 0 6 2], 0 2 8 -11 5]];
    • maqamic [1 1 0 4 2], 0 2 8 -4 5]];
      • maqamic 1 1 0 4 2 4], 0 2 8 -4 5 -1]];
  • beatles [1 1 5 4], 0 2 -9 -4]];
  • karadeniz [1 1 7 11 2], 0 2 -16 -28 5]];
  • hemififths [1 1 -5 -1], 0 2 25 13]];
  • bug [1 2 3], 0 -2 -3]];
    • beep [1 2 3 3], 0 -2 -3 -1]];
      • pentoid [1 2 3 3 3], 0 -2 -3 -1 2]];
  • superpelog [1 2 1 3], 0 -2 6 -1]];
  • godzilla [1 2 4 3], 0 -2 -8 -1]];
  • monzismic [1 2 10], 0 -2 -37]];
  • gidorah [1 1 2 3], 0 3 2 -1]];
  • enipucrop [1 2 2], 0 -3 2]];
  • penta [1 1 2 2], 0 3 2 4]];
  • laconic [1 1 1], 0 3 7]];
    • gorgo [1 1 1 3], 0 3 7 -1]];
      • gorgo [{{val| 1 1 1 3 1| 0 3 7 -1 13]];
        • gorgo [{{val| 1 1 1 3 1 2| 0 3 7 -1 13 9]];
      • spartan [{{val| 1 1 1 3 5| 0 3 7 -1 -8]];
  • pycnic [1 3 -1 8], 0 -3 7 -11]];
  • mothra, cynder [1 1 0 3], 0 3 12 -1]];
    • mothra, cynder [1 1 0 3 5], 0 3 12 -1 -8]];
  • rodan [1 1 -1 3], 0 3 17 -1]];
    • rodan [1 1 -1 3 6], 0 3 17 -1 -13]];
      • rodan [1 1 -1 3 6 8], 0 3 17 -1 -13 -22]];
      • aerodactyl [1 1 -1 3 6 -1], 0 3 17 -1 -13 24]];
  • guiron [1 1 7 3], 0 3 -24 -1]];
  • porcupine [1 2 3], 0 -3 -5]];
    • hystrix [1 2 3 3], 0 -3 -5 -1]];
    • porcupine [1 2 3 2], 0 -3 -5 6]];
      • porcupine [1 2 3 2 4], 0 -3 -5 6 -4]];
    • opossum, pentadecimal [1 2 3 4], 0 -3 -5 -9]];
      • opossum [1 2 3 4 4], 0 -3 -5 -9 -4]];
      • coendou [1 2 3 1 4 3], 0 -3 -5 13 -4 5]];
      • porcupinefish [1 2 3 2 4 6], 0 -3 -5 6 -4 -17]];
  • ammonite [1 5 8 10], 0 -9 -15 -19]];
  • triton [1 3 -1 -1], 0 -3 7 8]];
  • liese, gawel [1 3 8 8], 0 -3 -12 -11]];
  • tricot [1 3 16], 0 -3 -29]];
  • tetracot [1 1 1], 0 4 9]];
    • monkey [1 1 1 5], 0 4 9 -15]];
    • bunya [1 1 1 -1], 0 4 9 26]];
  • vulture [1 0 -6], 0 4 21]];
    • buzzard [1 0 -6 4], 0 4 21 -3]];
      • buzzard [1 0 -6 4 -12 -7], 0 4 21 -3 39 27]];
  • sesquiquartififths [1 1 7 5], 0 4 -32 -15]];
  • semihemififths [1 1 -5 -1 8], 0 4 50 26 -31]];
  • sidi [1 3 3 6], 0 -4 -2 -9]];
  • negri [1 2 2], 0 -4 3]];
    • negri [1 2 2 3], 0 -4 3 -2]];
      • negri [1 2 2 3 4], 0 -4 3 -2 -5]];
        • negri [1 2 2 3 4 4], 0 -4 3 -2 -5 -3]];
      • negril [1 2 2 3 2], 0 -4 3 -2 14]];
        • negril [1 2 2 3 2 4], 0 -4 3 -2 14 -3]];
  • sentinel [1 3 -3 6], 0 -4 15 -9]];
  • squares [1 3 8 6], 0 -4 -16 -9]];
  • magic [1 0 2], 0 5 1]];
    • muggles [1 0 2 5], 0 5 1 -7]];
    • magic [1 0 2 -1], 0 5 1 12]];
      • magic [1 0 2 -1 6], 0 5 1 12 -8]];
  • passion [1 2 2], 0 -5 4]];
    • passion [1 2 2 2], 0 -5 4 10]];
  • ripple [1 2 3], 0 -5 -8]];
    • ripple [1 2 3 3], 0 -5 -8 -2]];
  • tritonic [1 4 -3 -3], 0 -5 11 12]];
    • tritonic [1 4 -3 -3 2], 0 -5 11 12 3]];
  • amity [1 3 6], 0 -5 -13]];
    • amity [1 3 6 -2], 0 -5 -13 17]];
      • hitchcock, amity [1 3 6 -2 6], 0 -5 -13 17 -9]];
        • hitchcock [1 3 6 -2 6 2], 0 -5 -13 17 -9 6]];
  • gravity [1 5 12], 0 -6 -17]];
  • hanson [1 0 1], 0 6 5]];
    • keemun [1 0 1 2], 0 6 5 3]];
      • keemun [1 0 1 2 4], 0 6 5 3 -2]];
    • catakleismic [1 0 1 -3], 0 6 5 22]];
      • catakleismic [1 0 1 -3 9], 0 6 5 22 -21]];
        • catakleismic [1 0 1 -3 9 0], 0 6 5 22 -21 14]];
    • countercata [1 0 1 11], 0 6 5 -31]];
  • ampersand [1 1 3], 0 6 -7]];
    • miracle [1 1 3 3], 0 6 -7 -2]];
      • miracle [1 1 3 3 2], 0 6 -7 -2 15]];
  • marvo [1 -1 -5 -17], 0 6 17 46]];
  • nautilus [1 2 3 3], 0 -6 -10 -3]];
  • orson [1 0 3], 0 7 -3]];
    • orwell [1 0 3 1], 0 7 -3 8]];
      • orwell [1 0 3 1 3], 0 7 -3 8 2]];
        • orwell [1 0 3 1 3 8], 0 7 -3 8 2 -19]];
        • blair [1 0 3 1 3 3], 0 7 -3 8 2 3]];
        • winston [1 0 3 1 3 1], 0 7 -3 8 2 12]];
        • doublethink [1 0 3 1 3 2], 0 14 -6 16 4 15]];
  • sensi [1 -1 -1], 0 7 9]];
    • sensi [1 -1 -1 -2], 0 7 9 13]];
      • sensor [1 -1 -1 -2 9], 0 7 9 13 -15]];
        • sensor [1 -1 -1 -2 9 0], 0 7 9 13 -15 10]];
      • sensis [1 6 8 11 6], 0 -7 -9 -13 -4]];
        • sensis [1 6 8 11 6 10], 0 -7 -9 -13 -4 -10]];
      • sensus [1 6 8 11 23], 0 -7 -9 -13 -31]];
        • sensus [1 6 8 11 23 10], 0 -7 -9 -13 -31 -10]];
  • roman [1 4 3 -1 0 3], 0 -7 -2 11 10 2]];
  • octacot [1 1 1 2], 0 8 18 11]];
  • würschmidt [1 -1 2], 0 8 1]];
  • valentine [1 1 2], 0 9 5]];
    • valentine [1 1 2 3], 0 9 5 -3]];
      • valentine [1 1 2 3 3], 0 9 5 -3 7]];
        • valentino [1 1 2 3 3 5], 0 9 5 -3 7 -20]];
        • dwynwen [1 1 2 3 3 2], 0 9 5 -3 7 26]];
        • lupercalia [1 1 2 3 3 3], 0 9 5 -3 7 11]];
  • escapade [1 2 2], 0 -9 7]];
    • escapade [1 2 2 3], 0 -9 7 -4]];
    • escaped [1 2 2 4], 0 -9 7 -26]];
  • superkleismic [1 4 5 2], 0 -9 -10 3]];
    • superkleismic [1 4 5 2 4], 0 -9 -10 3 -2]];
  • mabila [1 6 1], 0 -10 3]];
  • myna [1 -1 0 1], 0 10 9 7]];
    • myna [1 -1 0 1 -3], 0 10 9 7 25]];
      • myna [1 -1 0 1 -3 5], 0 10 9 7 25 -5]];
  • sycamore [1 1 2], 0 11 6]];
    • sycamore [1 1 2 2], 0 11 6 15]];
  • septimin [1 4 1 5], 0 -11 6 -10]];
  • nusecond [1 3 4 5], 0 -11 -13 -17]];
  • quartonic [1 2 3 3], 0 -11 -18 -5]];
  • hemikleismic [1 0 1 4], 0 12 10 -9]];
  • clyde [1 6 6 12], 0 -12 -10 -25]];
  • bohpier [1 0 0 0], 0 13 19 23]];
  • gammic [1 1 2], 0 20 11]];
    • gammic [1 1 2 0], 0 20 11 96]];
  • neptune [1 21 13 13], 0 -40 -22 -21]];
  • pluto [1 5 15 15 2], 0 7 26 25 -3]];
  • twothirdtonic [1 3 2 4 4], 0 -13 3 -11 -5]];
    • twothirdtonic [1 3 2 4 4 5], 0 -13 3 -11 -5 -12]];
  • slender [1 2 2 3], 0 -13 10 -6]];
    • slender [1 2 2 3 4], 0 -13 10 -6 -17]];
  • parakleismic [1 5 6], 0 -13 -14]];
    • parakleismic [1 5 6 12], 0 -13 -14 -35]];
  • fortune [1 -1 11], 0 14 -47]];
  • hemithirds, luna [1 4 2], 0 -15 2]];
    • hemithirds [1 4 2 2], 0 -15 2 5]];
      • hemithirds [1 4 2 2 7], 0 -15 2 5 -22]];
  • hemiwürschmidt [1 -1 2 2], 0 16 2 5]];
    • hemiwürschmidt [1 -1 2 2 -3], 0 16 2 5 40]];
  • semisept [1 -5 0 -3], 0 17 6 15]];
  • vavoom [1 0 4], 0 17 -18]];
  • minortone [1 -1 -3], 0 17 35]];
    • mitonic [1 -1 -3 6], 0 17 35 -21]];
  • casablanca [1 -7 -4 1], 0 19 14 4]];
    • casablanca [1 -7 -4 1 3], 0 19 14 4 1]];
  • tertiaseptal [1 3 2 3], 0 -22 5 -3]];
  • grendel, voodoo [1 9 2 7], 0 -23 1 -13]];
  • gamera [1 6 10 3], 0 -23 -40 -1]];
  • astro [1 5 1], 0 -31 12]];
  • semihemiwürschmidt [1 15 4 7 24], 0 -32 -4 -10 -49]];
  • whoosh [1 17 14], 0 -33 -25]];
  • yarman [1 2 3 4 4], 0 -33 -54 -95 -43]];
  • senior [1 11 19], 0 -35 -62]];
  • raider [1 -9 -26], 0 37 99]];
  • supermajor [1 15 19 30], 0 -37 -46 -75]];
  • quasiorwell [1 -7 3 1], 0 38 -3 8]];
  • semigamera [1 6 10 3 12], 0 -46 -80 -2 -89]];
  • gross [1 -2 4], 0 47 -22]];
  • pirate [1 -6 0], 0 49 15]];
  • egads [1 15 16], 0 -51 -52]];

Two periods per octave

  • srutal [2 3 5], 0 1 -2]];
    • pajara [2 3 5 6], 0 1 -2 -2]];
      • pajaric [2 3 5 6 7], 0 1 -2 -2 0]];
      • pajarous [2 3 5 6 6], 0 1 -2 -2 5]];
      • pajara [2 3 5 6 8], 0 1 -2 -2 -6]];
    • diaschismic [2 3 5 7], 0 1 -2 -8]];
      • diaschismic [2 3 5 7 9 10], 0 1 -2 -8 -12 -15]];
    • keen [2 3 5 4], 0 1 -2 9]];
  • supersharp [2 3 4], 0 1 3]];
    • octokaidecal [2 3 4 5], 0 1 3 3]];
  • bipelog [2 3 5 6], 0 1 -3 -3]];
  • injera [2 3 4 5], 0 1 4 4]];
    • injera [2 3 4 5 6], 0 1 4 4 6]];
  • bischismic [2 3 6 9], 0 1 -8 -20]];
  • shrutar [2 3 5 5], 0 2 -4 7]];
    • shrutar [2 3 5 5 7], 0 2 -4 7 -1]];
      • srutar [2 3 5 5 7 8], 0 2 -4 7 -1 -7]];
      • shrutar [2 3 5 5 7 6], 0 2 -4 7 -1 16]];
  • echidna [2 1 9 2], 0 3 -6 5]];
    • echidna [2 1 9 2 12], 0 3 -6 5 -7]];
  • decimal [2 4 5 6], 0 -2 -1 -1]];
  • semihemi [2 4 15 11 21], 0 -2 -25 -13 -34]];
  • lemba [2 2 5 6], 0 3 -1 -1]];
  • hedgehog [2 4 6 7], 0 -3 -5 -5]];
  • doublewide [2 5 6], 0 -4 -3]];
  • sesquiquartififths [2 2 14 10], 0 4 -32 -15]];
  • hemiamity [2 1 -1 13 13], 0 5 13 -17 -14]];
  • wizard [2 1 5 2], 0 6 -1 10]];
    • wizard [2 1 5 2 8], 0 6 -1 10 -3]];
  • unidec [2 5 8 5], 0 -6 -11 2]];
    • unidec [2 5 8 5 6], 0 -6 -11 2 3]];
      • hendec [2 5 8 5 6 8], 0 -6 -11 2 3 -2]];
  • harry [2 4 7 7], 0 -6 -17 -10]];
  • vishnu [2 4 5], 0 -7 -3]];
    • vishnu [2 4 5 10], 0 -7 -3 -37]];
  • kwazy [2 1 6], 0 8 -5]];
    • bisupermajor [2 1 6 1 8], 0 8 -5 17 -4]];
  • semiparakleismic [2 -3 -2 -11 -4], 0 13 14 35 23]];
  • hemigamera [2 12 20 6], 0 -23 -40 -1]];
    • hemigamera [2 12 20 6 5], 0 -23 -40 -1 5]];
  • abigail [2 7 13 -1 1 -2], 0 -11 -24 19 17 27]];

Three periods per octave

  • augmented [3 5 7], 0 -1 0]];
    • augene, tripletone [3 5 7 8], 0 -1 0 2]];
      • augene, tripletone [3 5 7 8 10], 0 -1 0 2 2]];
    • august [3 5 7 9], 0 -1 0 -2]];
  • misty [3 5 6], 0 -1 4]];
    • misty [3 5 6 6], 0 -1 4 10]];
  • term [3 5 5 4], 0 -1 8 18]];
  • semiaug [3 5 7 9], 0 -2 0 -5]];
  • tritikleismic [3 6 8 8], 0 -6 -5 2]];
  • mutt [3 5 7 8], 0 -7 -1 12]];
  • ternary [3 5 7 8], 3 5 7 9]];

Four or more periods per octave

  • diminished [4 6 9], 0 1 1]];
    • diminished [4 6 9 11], 0 1 1 1]];
      • diminished [4 6 9 11 14], 0 1 1 1 0]];
      • demolished [4 6 9 11 13], 0 1 1 1 3]];
  • blackwood [5 8 12], 0 0 -1]];
    • blacksmith [5 8 12 14], 0 0 -1 0]];
  • hexe [6 10 14 17], 0 -1 0 0]];
  • jamesbond [7 11 16 20], 0 0 0 -1]];
    • jamesbond [7 11 16 20 24], 0 0 0 -1 0]];
  • whitewood [7 11 16], 0 0 1]];
  • octoid [8 13 19 23 28], 0 -3 -4 -5 -3]];
  • ennealimmal [9 15 22], 0 -2 -3]];
    • ennealimmal [9 15 22 26], 0 -2 -3 -2]];
      • ennealimmal [9 15 22 26 37], 0 -2 -3 -2 -16]];
  • decoid [10 0 47 36], 0 2 -3 -1]];
    • decoid [10 0 47 36 98], 0 2 -3 -1 -8]];
      • decoid [10 0 47 36 98 37], 0 2 -3 -1 -8 0]];
  • hendecatonic [11 17 26 30], 0 1 -1 2]];
  • catler [12 19 28 34], 0 0 0 -1]];
  • compton [12 19 28], 0 0 -1]];
    • compton, waage [12 19 28 34], 0 0 -1 -2]];
      • compton, duodecimal [12 19 28 34 42], 0 0 -1 -2 -3]];
  • duodecim [12 19 28 34 42], 0 0 0 0 -1]];
  • atomic [12 19 28], 0 1 -7]];
  • hemiennealimmal [18 28 41 50 62], 0 2 3 2 1]];
  • enneadecal [19 30 44], 0 1 1]];
    • enneadecal [19 30 44 53], 0 1 1 3]];
  • undevigintone [19 30 44 53 66], 0 0 0 0 -1]];
  • icosidillic [22 35 51 62 76], 0 -1 1 -2 1]];
  • vigintiduo [22 35 51 62 76], 0 0 0 0 1]];
  • mystery [29 46 67 81 100 107], 0 0 1 1 1 1]];
  • hemienneadecal [38 60 88 106 131], 0 1 1 3 2]];