45zpi
45 zeta peak index (abbreviated 45zpi), is the equal-step tuning system obtained from the 45th peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
45zpi | 14.5944346577250 | 82.2231232756126 | 2.097730 | 0.344839 | 10.594800 | 15edo | 1233.34684913419 | 2 | 2 |
Theory
45zpi is characterized by a very broad octave error, yet it maintains a quite decent zeta strength. This combination makes it an ideal candidate for no-octave tuning applications.
No other zeta peak indexes exhibit both a larger octave error and greater zeta height than 45zpi.
45zpi supports a complex chord structure with ratios of 1:3:4:5:7:9:13:15:18:19:20:21:22:23:24:25, which further exemplifies its capabilities.
The closest zeta peak indexes to 45zpi that exceed its strength are 42zpi and 47zpi, though 43zpi is nearly as strong as 45zpi.
Harmonic series
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +33.3 | -10.8 | -15.5 | +9.3 | +22.5 | +2.3 | +17.8 | -21.6 | -39.6 | -40.2 | -26.4 | -0.5 | +35.7 | -1.6 | -31.1 |
Relative (%) | +40.6 | -13.2 | -18.9 | +11.3 | +27.4 | +2.8 | +21.7 | -26.3 | -48.2 | -48.8 | -32.1 | -0.6 | +43.4 | -1.9 | -37.8 | |
Step | 15 | 23 | 29 | 34 | 38 | 41 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 57 | 58 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +28.4 | +11.7 | +0.3 | -6.3 | -8.5 | -6.8 | -1.5 | +7.0 | +18.5 | +32.9 | -32.5 | -13.2 | +8.3 | +31.8 | -25.0 | +2.3 |
Relative (%) | +34.6 | +14.2 | +0.4 | -7.6 | -10.3 | -8.3 | -1.9 | +8.5 | +22.6 | +40.0 | -39.5 | -16.1 | +10.1 | +38.7 | -30.4 | +2.8 | |
Step | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 69 | 70 | 71 | 72 | 72 | 73 |
Intervals
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 13 steps Limma = 4 steps Apotome = 9 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 82.223 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17, 17/16, 16/15, 31/29, 15/14 | ^m2 | 5 |
2 | 164.446 | 29/27, 14/13, 27/25, 13/12, 25/23, 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vvvM2 | 10 |
3 | 246.669 | 26/23, 17/15, 25/22, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25, 7/6, 27/23, 20/17 | ^^M2, vvm3 | 15 |
4 | 328.892 | 13/11, 32/27, 19/16, 25/21, 31/26, 6/5, 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21 | ^^^m3 | 20 |
5 | 411.116 | 31/25, 5/4, 29/23, 24/19, 19/15, 14/11, 23/18, 32/25, 9/7, 31/24, 22/17 | vM3 | 25 |
6 | 493.339 | 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 4/3, 31/23, 27/20, 23/17, 19/14 | P4 | 30 |
7 | 575.562 | 15/11, 26/19, 11/8, 29/21, 18/13, 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19 | v4A4 | 35 |
8 | 657.785 | 10/7, 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21 | vvv5 | 40 |
9 | 740.008 | 3/2, 32/21, 29/19, 26/17, 23/15, 20/13, 17/11, 31/20, 14/9, 25/16 | ^^5, vvm6 | 45 |
10 | 822.231 | 11/7, 30/19, 19/12, 27/17, 8/5, 29/18, 21/13, 13/8, 31/19, 18/11, 23/14 | ^^^m6 | 50 |
11 | 904.454 | 28/17, 5/3, 32/19, 27/16, 22/13, 17/10, 29/17, 12/7, 31/18 | vM6 | 55 |
12 | 986.677 | 19/11, 26/15, 7/4, 30/17, 23/13, 16/9, 25/14, 9/5 | m7 | 60 |
13 | 1068.901 | 29/16, 20/11, 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17, 17/9 | v4M7 | 65 |
14 | 1151.124 | 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | ^M7 | 70 |
15 | 1233.347 | 2/1, 31/15, 29/14, 27/13, 25/12 | ^^1 +1 oct, vvm2 +1 oct | 75 |
16 | 1315.570 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13, 13/6, 24/11 | ^^^m2 +1 oct | 80 |
17 | 1397.793 | 11/5, 31/14, 20/9, 29/13, 9/4, 25/11, 16/7 | vM2 +1 oct | 85 |
18 | 1480.016 | 23/10, 30/13, 7/3, 26/11, 19/8, 31/13, 12/5 | m3 +1 oct | 90 |
19 | 1562.239 | 29/12, 17/7, 22/9, 27/11, 32/13, 5/2 | v4M3 +1 oct | 95 |
20 | 1644.462 | 28/11, 23/9, 18/7, 31/12, 13/5, 21/8, 29/11 | ^M3 +1 oct | 100 |
21 | 1726.686 | 8/3, 27/10, 19/7, 30/11, 11/4 | ^^4 +1 oct | 105 |
22 | 1808.909 | 25/9, 14/5, 31/11, 17/6, 20/7, 23/8, 26/9, 29/10, 32/11 | ^^^d5 +1 oct | 110 |
23 | 1891.132 | 3/1 | v5 +1 oct | 115 |
24 | 1973.355 | 31/10, 28/9, 25/8, 22/7, 19/6, 16/5 | m6 +1 oct | 120 |
25 | 2055.578 | 29/9, 13/4, 23/7, 10/3 | v4M6 +1 oct | 125 |
26 | 2137.801 | 27/8, 17/5, 24/7, 31/9, 7/2 | ^M6 +1 oct | 130 |
27 | 2220.024 | 32/9, 25/7, 18/5, 29/8, 11/3 | ^^m7 +1 oct | 135 |
28 | 2302.247 | 26/7, 15/4, 19/5, 23/6, 27/7 | vvM7 +1 oct | 140 |
29 | 2384.471 | 31/8, 4/1 | v1 +2 oct | 145 |
30 | 2466.694 | 29/7, 25/6, 21/5, 17/4 | m2 +2 oct | 150 |
31 | 2548.917 | 30/7, 13/3, 22/5, 31/7 | v4M2 +2 oct | 155 |
32 | 2631.140 | 9/2, 32/7, 23/5, 14/3 | ^M2 +2 oct | 160 |
33 | 2713.363 | 19/4, 24/5, 29/6 | ^^m3 +2 oct | 165 |
34 | 2795.586 | 5/1 | vvM3 +2 oct | 170 |
35 | 2877.809 | 31/6, 26/5, 21/4, 16/3 | v4 +2 oct | 175 |
36 | 2960.032 | 27/5, 11/2, 28/5 | ^44 +2 oct | 180 |
37 | 3042.256 | 17/3, 23/4, 29/5 | v45 +2 oct | 185 |
38 | 3124.479 | 6/1, 31/5 | ^5 +2 oct | 190 |
39 | 3206.702 | 25/4, 19/3, 32/5, 13/2 | ^^m6 +2 oct | 195 |
40 | 3288.925 | 20/3, 27/4 | vvM6 +2 oct | 200 |
41 | 3371.148 | 7/1 | vm7 +2 oct | 205 |
42 | 3453.371 | 29/4, 22/3, 15/2 | ^4m7 +2 oct | 210 |
43 | 3535.594 | 23/3, 31/4 | M7 +2 oct | 215 |
44 | 3617.817 | 8/1 | ^1 +3 oct | 220 |
45 | 3700.041 | 25/3, 17/2, 26/3 | ^^m2 +3 oct | 225 |
46 | 3782.264 | 9/1 | vvM2 +3 oct | 230 |
47 | 3864.487 | 28/3, 19/2 | vm3 +3 oct | 235 |
48 | 3946.710 | 29/3, 10/1 | ^4m3 +3 oct | 240 |
49 | 4028.933 | 31/3 | M3 +3 oct | 245 |
50 | 4111.156 | 21/2, 32/3, 11/1 | ^4 +3 oct | 250 |
51 | 4193.379 | 23/2 | vvvA4 +3 oct | 255 |
52 | 4275.602 | 12/1 | vv5 +3 oct | 260 |
53 | 4357.826 | 25/2 | vm6 +3 oct | 265 |
54 | 4440.049 | 13/1 | ^4m6 +3 oct | 270 |
55 | 4522.272 | 27/2 | M6 +3 oct | 275 |
56 | 4604.495 | 14/1, 29/2 | ^m7 +3 oct | 280 |
57 | 4686.718 | 15/1 | vvvM7 +3 oct | 285 |
58 | 4768.941 | 31/2, 16/1 | ^^M7 +3 oct, vv1 +4 oct | 290 |
59 | 4851.164 | vm2 +4 oct | 295 | |
60 | 4933.387 | 17/1 | ^4m2 +4 oct | 300 |
61 | 5015.611 | 18/1 | M2 +4 oct | 305 |
62 | 5097.834 | 19/1 | ^m3 +4 oct | 310 |
63 | 5180.057 | 20/1 | vvvM3 +4 oct | 315 |
64 | 5262.280 | 21/1 | ^^M3 +4 oct, vv4 +4 oct | 320 |
65 | 5344.503 | 22/1 | ^^^4 +4 oct | 325 |
66 | 5426.726 | 23/1 | ^4d5 +4 oct | 330 |
67 | 5508.949 | 24/1 | P5 +4 oct | 335 |
68 | 5591.172 | 25/1 | ^m6 +4 oct | 340 |
69 | 5673.396 | 26/1, 27/1 | vvvM6 +4 oct | 345 |
70 | 5755.619 | 28/1 | ^^M6 +4 oct, vvm7 +4 oct | 350 |
71 | 5837.842 | 29/1 | ^^^m7 +4 oct | 355 |
72 | 5920.065 | 30/1, 31/1 | vM7 +4 oct | 360 |
73 | 6002.288 | 32/1 | P1 +5 oct | 365 |
Approximation to JI
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
23/15 | -0.002 | -0.003 |
32/7 | +0.034 | +0.042 |
19/1 | -0.321 | -0.390 |
13/1 | +0.479 | +0.583 |
11/10 | +0.558 | +0.679 |
25/8 | -0.728 | -0.885 |
19/13 | -0.800 | -0.973 |
29/5 | +1.008 | +1.226 |
23/13 | +1.069 | +1.300 |
15/13 | +1.072 | +1.303 |
29/24 | -1.270 | -1.545 |
31/12 | -1.382 | -1.681 |
27/16 | +1.411 | +1.716 |
23/1 | +1.548 | +1.883 |
15/1 | +1.551 | +1.886 |
22/21 | -1.686 | -2.051 |
23/19 | +1.869 | +2.273 |
19/15 | -1.871 | -2.276 |
32/19 | -1.967 | -2.393 |
19/7 | +2.002 | +2.434 |
21/20 | +2.244 | +2.729 |
24/5 | +2.278 | +2.771 |
32/1 | -2.288 | -2.783 |
7/1 | -2.322 | -2.824 |
28/3 | +2.384 | +2.900 |
18/5 | -2.428 | -2.953 |
32/13 | -2.767 | -3.365 |
13/7 | +2.801 | +3.407 |
31/9 | +3.324 | +4.043 |
30/17 | -3.364 | -4.092 |
29/18 | +3.436 | +4.179 |
32/23 | -3.836 | -4.666 |
32/15 | -3.839 | -4.669 |
23/7 | +3.870 | +4.707 |
15/7 | +3.873 | +4.710 |
25/6 | +3.979 | +4.839 |
22/3 | -4.008 | -4.875 |
26/17 | -4.436 | -5.395 |
20/3 | -4.566 | -5.553 |
24/7 | -4.672 | -5.682 |
4/3 | +4.706 | +5.724 |
23/20 | -4.709 | -5.727 |
17/2 | +4.915 | +5.977 |
22/15 | +5.264 | +6.402 |
23/22 | -5.267 | -6.405 |
20/13 | +5.778 | +7.027 |
17/6 | -5.908 | -7.186 |
29/7 | -5.942 | -7.227 |
32/29 | +5.977 | +7.269 |
31/16 | -6.088 | -7.404 |
9/4 | +6.117 | +7.439 |
20/1 | +6.257 | +7.610 |
22/13 | +6.336 | +7.706 |
14/11 | +6.392 | +7.774 |
20/19 | +6.578 | +8.000 |
24/19 | -6.674 | -8.116 |
22/1 | +6.815 | +8.288 |
25/18 | -6.844 | -8.324 |
7/5 | +6.950 | +8.453 |
23/21 | -6.953 | -8.456 |
32/5 | +6.984 | +8.495 |
24/1 | -6.994 | -8.506 |
21/4 | -7.028 | -8.548 |
27/10 | -7.134 | -8.677 |
22/19 | +7.136 | +8.678 |
17/14 | +7.237 | +8.802 |
24/13 | -7.473 | -9.089 |
31/27 | -7.499 | -9.120 |
27/11 | -7.692 | -9.355 |
29/19 | -7.944 | -9.661 |
21/13 | +8.022 | +9.756 |
29/1 | -8.265 | -10.051 |
28/9 | -8.439 | -10.264 |
21/1 | +8.501 | +10.339 |
24/23 | -8.542 | -10.389 |
8/5 | -8.545 | -10.392 |
20/7 | +8.579 | +10.434 |
11/2 | -8.714 | -10.599 |
29/13 | -8.744 | -10.634 |
21/19 | +8.822 | +10.729 |
19/5 | +8.952 | +10.887 |
16/11 | -9.103 | -11.071 |
22/7 | +9.137 | +11.113 |
26/11 | +9.194 | +11.181 |
5/1 | -9.272 | -11.277 |
23/3 | -9.275 | -11.280 |
18/7 | -9.378 | -11.406 |
16/9 | +9.413 | +11.448 |
31/4 | +9.441 | +11.483 |
29/8 | +9.553 | +11.618 |
13/5 | +9.751 | +11.860 |
29/23 | -9.813 | -11.934 |
29/15 | -9.815 | -11.937 |
25/17 | +9.887 | +12.025 |
30/11 | +10.265 | +12.485 |
29/25 | +10.280 | +12.503 |
13/3 | -10.344 | -12.581 |
17/8 | -10.615 | -12.909 |
32/21 | -10.789 | -13.122 |
23/5 | +10.821 | +13.160 |
3/1 | +10.823 | +13.163 |
19/3 | -11.144 | -13.553 |
19/18 | +11.380 | +13.840 |
25/24 | -11.551 | -14.048 |
28/15 | +11.657 | +14.177 |
28/23 | +11.659 | +14.180 |
18/1 | -11.701 | -14.230 |
31/28 | +11.763 | +14.307 |
18/13 | -12.180 | -14.813 |
28/13 | +12.728 | +15.480 |
32/3 | -13.111 | -15.946 |
7/3 | -13.145 | -15.987 |
28/1 | +13.207 | +16.063 |
23/18 | +13.249 | +16.113 |
6/5 | -13.251 | -16.116 |
28/19 | +13.528 | +16.453 |
17/11 | +13.629 | +16.576 |
12/11 | -13.809 | -16.795 |
15/4 | -13.979 | -17.001 |
23/4 | -13.981 | -17.004 |
27/14 | -14.085 | -17.130 |
31/3 | +14.148 | +17.206 |
17/10 | +14.187 | +17.255 |
29/6 | +14.259 | +17.342 |
26/25 | -14.323 | -17.420 |
29/20 | -14.522 | -17.661 |
31/10 | -14.633 | -17.797 |
25/2 | +14.802 | +18.002 |
22/9 | -14.831 | -18.038 |
13/4 | -15.050 | -18.304 |
29/22 | -15.079 | -18.340 |
31/11 | -15.191 | -18.475 |
20/9 | -15.389 | -18.717 |
8/7 | -15.495 | -18.845 |
4/1 | +15.529 | +18.887 |
19/4 | -15.850 | -19.277 |
22/5 | +16.087 | +19.566 |
25/7 | -16.223 | -19.730 |
32/25 | +16.257 | +19.772 |
27/2 | -16.407 | -19.954 |
31/21 | +16.470 | +20.030 |
18/17 | +16.731 | +20.349 |
29/21 | -16.766 | -20.390 |
27/26 | -16.886 | -20.537 |
27/4 | +16.940 | +20.603 |
25/14 | +17.124 | +20.826 |
19/8 | +17.497 | +21.280 |
21/5 | +17.773 | +21.616 |
8/1 | -17.817 | -21.670 |
7/4 | -17.852 | -21.711 |
10/9 | +17.957 | +21.840 |
31/22 | +18.156 | +22.081 |
25/19 | -18.224 | -22.164 |
13/8 | +18.296 | +22.252 |
11/9 | +18.515 | +22.519 |
25/1 | -18.545 | -22.554 |
31/20 | +18.714 | +22.760 |
25/13 | -19.024 | -23.137 |
29/3 | -19.088 | -23.215 |
17/5 | -19.160 | -23.302 |
28/27 | -19.262 | -23.427 |
23/8 | +19.366 | +23.553 |
15/8 | +19.368 | +23.556 |
11/6 | -19.538 | -23.762 |
25/23 | -20.093 | -24.437 |
5/3 | -20.096 | -24.440 |
23/9 | -20.098 | -24.443 |
29/17 | +20.167 | +24.528 |
7/6 | +20.202 | +24.569 |
16/3 | +20.236 | +24.611 |
13/9 | -21.167 | -25.744 |
27/17 | -21.322 | -25.931 |
24/17 | +21.438 | +26.073 |
29/28 | -21.472 | -26.114 |
31/14 | -21.583 | -26.250 |
9/1 | +21.646 | +26.326 |
19/9 | -21.967 | -26.716 |
19/6 | +22.203 | +27.003 |
28/5 | +22.480 | +27.340 |
6/1 | -22.524 | -27.393 |
21/16 | -22.558 | -27.435 |
17/16 | +22.732 | +27.647 |
13/6 | +23.003 | +27.976 |
31/15 | +23.420 | +28.483 |
31/23 | +23.422 | +28.486 |
25/11 | +23.516 | +28.601 |
30/29 | -23.532 | -28.619 |
26/5 | -23.595 | -28.697 |
29/4 | -23.794 | -28.938 |
31/2 | -23.906 | -29.074 |
32/9 | -23.934 | -29.109 |
9/7 | +23.968 | +29.151 |
23/6 | +24.072 | +29.276 |
5/2 | +24.074 | +29.279 |
11/8 | -24.244 | -29.486 |
31/26 | -24.385 | -29.657 |
31/13 | +24.492 | +29.787 |
29/26 | +24.603 | +29.923 |
11/4 | +24.632 | +29.958 |
5/4 | -24.802 | -30.164 |
23/12 | -24.804 | -30.167 |
14/9 | +24.908 | +30.293 |
31/1 | +24.971 | +30.369 |
29/2 | +25.082 | +30.505 |
31/19 | +25.291 | +30.759 |
25/22 | -25.360 | -30.843 |
31/30 | -25.456 | -30.960 |
27/22 | +25.655 | +31.201 |
13/12 | -25.874 | -31.468 |
17/7 | -26.110 | -31.755 |
32/17 | +26.144 | +31.796 |
27/20 | +26.213 | +31.880 |
21/8 | +26.318 | +32.009 |
12/1 | +26.353 | +32.050 |
14/5 | -26.397 | -32.104 |
19/12 | -26.673 | -32.440 |
28/11 | -26.955 | -32.782 |
25/21 | -27.046 | -32.893 |
9/2 | -27.230 | -33.117 |
32/31 | -27.259 | -33.152 |
31/7 | +27.293 | +33.194 |
29/14 | +27.404 | +33.329 |
17/12 | +27.439 | +33.371 |
26/9 | +27.709 | +33.700 |
19/17 | +28.111 | +34.189 |
17/1 | -28.432 | -34.579 |
8/3 | -28.641 | -34.833 |
12/7 | +28.675 | +34.874 |
10/3 | +28.781 | +35.003 |
31/17 | -28.820 | -35.052 |
17/13 | -28.911 | -35.162 |
11/3 | +29.339 | +35.682 |
25/3 | -29.368 | -35.718 |
30/7 | -29.474 | -35.846 |
16/15 | +29.508 | +35.888 |
23/16 | -29.511 | -35.891 |
29/9 | -29.911 | -36.378 |
23/17 | +29.980 | +36.462 |
17/15 | -29.983 | -36.465 |
18/11 | +30.361 | +36.925 |
26/7 | -30.546 | -37.150 |
16/13 | +30.580 | +37.191 |
9/5 | +30.919 | +37.604 |
27/23 | +30.921 | +37.607 |
7/2 | +31.025 | +37.732 |
16/1 | +31.059 | +37.774 |
21/10 | -31.103 | -37.827 |
27/25 | -31.209 | -37.956 |
19/16 | -31.379 | -38.164 |
30/19 | -31.476 | -38.281 |
21/11 | -31.661 | -38.506 |
28/25 | +31.752 | +38.617 |
30/1 | -31.796 | -38.671 |
27/8 | -31.936 | -38.841 |
31/24 | +31.965 | +38.876 |
27/13 | +31.990 | +38.907 |
17/9 | +32.145 | +39.095 |
30/13 | -32.275 | -39.253 |
27/1 | +32.469 | +39.489 |
26/19 | -32.547 | -39.584 |
25/16 | +32.619 | +39.672 |
11/5 | -32.789 | -39.878 |
27/19 | +32.790 | +39.879 |
26/1 | -32.868 | -39.974 |
19/2 | +33.026 | +40.167 |
31/29 | +33.235 | +40.421 |
30/23 | -33.344 | -40.554 |
2/1 | -33.347 | -40.557 |
16/7 | +33.381 | +40.598 |
29/11 | +33.797 | +41.104 |
13/2 | +33.826 | +41.139 |
20/11 | -33.905 | -41.235 |
25/4 | -34.074 | -41.441 |
31/5 | +34.243 | +41.647 |
29/10 | +34.355 | +41.782 |
26/23 | -34.416 | -41.857 |
26/15 | -34.419 | -41.860 |
29/12 | -34.617 | -42.101 |
20/17 | +34.689 | +42.189 |
31/6 | -34.729 | -42.237 |
32/27 | -34.757 | -42.272 |
27/7 | +34.792 | +42.314 |
23/2 | +34.895 | +42.439 |
15/2 | +34.898 | +42.442 |
24/11 | +35.067 | +42.649 |
22/17 | +35.247 | +42.867 |
19/14 | +35.348 | +42.991 |
12/5 | +35.625 | +43.327 |
14/1 | -35.669 | -43.381 |
14/3 | +35.731 | +43.456 |
14/13 | -36.148 | -43.963 |
31/18 | +36.671 | +44.600 |
21/17 | +36.933 | +44.918 |
23/14 | +37.217 | +45.264 |
15/14 | +37.220 | +45.267 |
25/12 | +37.326 | +45.395 |
3/2 | -38.053 | -46.280 |
23/10 | -38.056 | -46.283 |
17/4 | +38.262 | +46.534 |
26/3 | +38.532 | +46.863 |
15/11 | -38.611 | -46.959 |
23/11 | -38.614 | -46.962 |
31/25 | -38.707 | -47.076 |
13/10 | -39.125 | -47.584 |
17/3 | -39.255 | -47.742 |
29/16 | -39.323 | -47.825 |
31/8 | -39.435 | -47.961 |
9/8 | +39.464 | +47.996 |
10/1 | +39.604 | +48.166 |
13/11 | -39.683 | -48.262 |
11/7 | -39.739 | -48.331 |
32/11 | +39.773 | +48.372 |
19/10 | -39.924 | -48.556 |
11/1 | +40.162 | +48.845 |
25/9 | -40.191 | -48.881 |
10/7 | -40.297 | -49.010 |
16/5 | +40.331 | +49.051 |
21/2 | -40.375 | -49.105 |
27/5 | -40.481 | -49.233 |
19/11 | -40.482 | -49.235 |
28/17 | -40.584 | -49.358 |
29/27 | -40.734 | -49.541 |
26/21 | +40.854 | +49.687 |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |