45zpi
45 zeta peak index (abbreviated 45zpi), is the equal-step tuning system obtained from the 45th peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
45zpi | 14.5944346577250 | 82.2231232756126 | 2.097730 | 0.344839 | 10.594800 | 15edo | 1233.34684913419 | 2 | 2 |
Theory
45zpi is characterized by a very broad octave error, yet it maintains a quite decent zeta strength. This combination makes it an ideal candidate for no-octave tuning applications.
No other zeta peak indexes exhibit both a larger octave error and greater zeta height than 45zpi.
45zpi supports a complex chord structure with ratios of 1:3:4:5:7:9:13:15:18:19:20:21:22:23:24:25, which further exemplifies its capabilities.
The closest zeta peak indexes to 45zpi that exceed its strength are 42zpi and 47zpi, though 43zpi is nearly as strong as 45zpi.
Harmonic series
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +33.3 | -10.8 | -15.5 | +9.3 | +22.5 | +2.3 | +17.8 | -21.6 | -39.6 | -40.2 | -26.4 | -0.5 | +35.7 | -1.6 | -31.1 |
Relative (%) | +40.6 | -13.2 | -18.9 | +11.3 | +27.4 | +2.8 | +21.7 | -26.3 | -48.2 | -48.8 | -32.1 | -0.6 | +43.4 | -1.9 | -37.8 | |
Steps | 15 | 23 | 29 | 34 | 38 | 41 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 57 | 58 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +28.4 | +11.7 | +0.3 | -6.3 | -8.5 | -6.8 | -1.5 | +7.0 | +18.5 | +32.9 | -32.5 | -13.2 | +8.3 | +31.8 | -25.0 | +2.3 |
Relative (%) | +34.6 | +14.2 | +0.4 | -7.6 | -10.3 | -8.3 | -1.9 | +8.5 | +22.6 | +40.0 | -39.5 | -16.1 | +10.1 | +38.7 | -30.4 | +2.8 | |
Steps | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 69 | 70 | 71 | 72 | 72 | 73 |
Intervals
JI ratios are comprised of 25-integer-limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 13 steps Limma = 4 steps Apotome = 9 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 82.223 | 25/24, 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17, 17/16, 16/15, 15/14 | ^m2 | 5 |
2 | 164.446 | 14/13, 13/12, 25/23, 12/11, 23/21, 11/10, 21/19, 10/9, 19/17, 9/8 | vvvM2 | 10 |
3 | 246.669 | 17/15, 25/22, 8/7, 23/20, 15/13, 22/19, 7/6, 20/17 | ^^M2, vvm3 | 15 |
4 | 328.892 | 13/11, 19/16, 25/21, 6/5, 23/19, 17/14, 11/9, 16/13, 21/17 | ^^^m3 | 20 |
5 | 411.116 | 5/4, 24/19, 19/15, 14/11, 23/18, 9/7, 22/17 | vM3 | 25 |
6 | 493.339 | 13/10, 17/13, 21/16, 25/19, 4/3, 23/17, 19/14 | P4 | 30 |
7 | 575.562 | 15/11, 11/8, 18/13, 25/18, 7/5, 24/17, 17/12 | v4A4 | 35 |
8 | 657.785 | 10/7, 23/16, 13/9, 16/11, 19/13, 22/15, 25/17 | vvv5 | 40 |
9 | 740.008 | 3/2, 23/15, 20/13, 17/11, 14/9, 25/16 | ^^5, vvm6 | 45 |
10 | 822.231 | 11/7, 19/12, 8/5, 21/13, 13/8, 18/11, 23/14 | ^^^m6 | 50 |
11 | 904.454 | 5/3, 22/13, 17/10, 12/7 | vM6 | 55 |
12 | 986.677 | 19/11, 7/4, 23/13, 16/9, 25/14, 9/5 | m7 | 60 |
13 | 1068.901 | 20/11, 11/6, 24/13, 13/7, 15/8, 17/9 | v4M7 | 65 |
14 | 1151.124 | 19/10, 21/11, 23/12, 25/13 | ^M7 | 70 |
15 | 1233.347 | 2/1, 25/12 | ^^1 +1 oct, vvm2 +1 oct | 75 |
16 | 1315.570 | 23/11, 21/10, 19/9, 17/8, 15/7, 13/6, 24/11 | ^^^m2 +1 oct | 80 |
17 | 1397.793 | 11/5, 20/9, 9/4, 25/11, 16/7 | vM2 +1 oct | 85 |
18 | 1480.016 | 23/10, 7/3, 19/8, 12/5 | m3 +1 oct | 90 |
19 | 1562.239 | 17/7, 22/9, 5/2 | v4M3 +1 oct | 95 |
20 | 1644.462 | 23/9, 18/7, 13/5, 21/8 | ^M3 +1 oct | 100 |
21 | 1726.686 | 8/3, 19/7, 11/4 | ^^4 +1 oct | 105 |
22 | 1808.909 | 25/9, 14/5, 17/6, 20/7, 23/8 | ^^^d5 +1 oct | 110 |
23 | 1891.132 | 3/1 | v5 +1 oct | 115 |
24 | 1973.355 | 25/8, 22/7, 19/6, 16/5 | m6 +1 oct | 120 |
25 | 2055.578 | 13/4, 23/7, 10/3 | v4M6 +1 oct | 125 |
26 | 2137.801 | 17/5, 24/7, 7/2 | ^M6 +1 oct | 130 |
27 | 2220.024 | 25/7, 18/5, 11/3 | ^^m7 +1 oct | 135 |
28 | 2302.247 | 15/4, 19/5, 23/6 | vvM7 +1 oct | 140 |
29 | 2384.471 | 4/1 | v1 +2 oct | 145 |
30 | 2466.694 | 25/6, 21/5, 17/4 | m2 +2 oct | 150 |
31 | 2548.917 | 13/3, 22/5 | v4M2 +2 oct | 155 |
32 | 2631.140 | 9/2, 23/5, 14/3 | ^M2 +2 oct | 160 |
33 | 2713.363 | 19/4, 24/5 | ^^m3 +2 oct | 165 |
34 | 2795.586 | 5/1 | vvM3 +2 oct | 170 |
35 | 2877.809 | 21/4, 16/3 | v4 +2 oct | 175 |
36 | 2960.032 | 11/2 | ^44 +2 oct | 180 |
37 | 3042.256 | 17/3, 23/4 | v45 +2 oct | 185 |
38 | 3124.479 | 6/1 | ^5 +2 oct | 190 |
39 | 3206.702 | 25/4, 19/3, 13/2 | ^^m6 +2 oct | 195 |
40 | 3288.925 | 20/3 | vvM6 +2 oct | 200 |
41 | 3371.148 | 7/1 | vm7 +2 oct | 205 |
42 | 3453.371 | 22/3, 15/2 | ^4m7 +2 oct | 210 |
43 | 3535.594 | 23/3 | M7 +2 oct | 215 |
44 | 3617.817 | 8/1 | ^1 +3 oct | 220 |
45 | 3700.041 | 25/3, 17/2 | ^^m2 +3 oct | 225 |
46 | 3782.264 | 9/1 | vvM2 +3 oct | 230 |
47 | 3864.487 | 19/2 | vm3 +3 oct | 235 |
48 | 3946.710 | 10/1 | ^4m3 +3 oct | 240 |
49 | 4028.933 | M3 +3 oct | 245 | |
50 | 4111.156 | 21/2, 11/1 | ^4 +3 oct | 250 |
51 | 4193.379 | 23/2 | vvvA4 +3 oct | 255 |
52 | 4275.602 | 12/1 | vv5 +3 oct | 260 |
53 | 4357.826 | 25/2 | vm6 +3 oct | 265 |
54 | 4440.049 | 13/1 | ^4m6 +3 oct | 270 |
55 | 4522.272 | M6 +3 oct | 275 | |
56 | 4604.495 | 14/1 | ^m7 +3 oct | 280 |
57 | 4686.718 | 15/1 | vvvM7 +3 oct | 285 |
58 | 4768.941 | 16/1 | ^^M7 +3 oct, vv1 +4 oct | 290 |
59 | 4851.164 | vm2 +4 oct | 295 | |
60 | 4933.387 | 17/1 | ^4m2 +4 oct | 300 |
61 | 5015.611 | 18/1 | M2 +4 oct | 305 |
62 | 5097.834 | 19/1 | ^m3 +4 oct | 310 |
63 | 5180.057 | 20/1 | vvvM3 +4 oct | 315 |
64 | 5262.280 | 21/1 | ^^M3 +4 oct, vv4 +4 oct | 320 |
65 | 5344.503 | 22/1 | ^^^4 +4 oct | 325 |
66 | 5426.726 | 23/1 | ^4d5 +4 oct | 330 |
67 | 5508.949 | 24/1 | P5 +4 oct | 335 |
68 | 5591.172 | 25/1 | ^m6 +4 oct | 340 |
Approximation to JI
Interval mappings
The following tables show how 25-integer-limit intervals are represented in 45zpi. Prime harmonics are in bold; inconsistent intervals are in italics.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
23/15 | +0.002 | +0.003 |
19/1 | +0.321 | +0.390 |
13/1 | -0.479 | -0.583 |
11/10 | -0.558 | -0.679 |
25/8 | +0.728 | +0.885 |
19/13 | +0.800 | +0.973 |
23/13 | -1.069 | -1.300 |
15/13 | -1.072 | -1.303 |
23/1 | -1.548 | -1.883 |
15/1 | -1.551 | -1.886 |
22/21 | +1.686 | +2.051 |
23/19 | -1.869 | -2.273 |
19/15 | +1.871 | +2.276 |
19/7 | -2.002 | -2.434 |
21/20 | -2.244 | -2.729 |
24/5 | -2.278 | -2.771 |
7/1 | +2.322 | +2.824 |
18/5 | +2.428 | +2.953 |
13/7 | -2.801 | -3.407 |
23/7 | -3.870 | -4.707 |
15/7 | -3.873 | -4.710 |
25/6 | -3.979 | -4.839 |
22/3 | +4.008 | +4.875 |
20/3 | +4.566 | +5.553 |
24/7 | +4.672 | +5.682 |
4/3 | -4.706 | -5.724 |
23/20 | +4.709 | +5.727 |
17/2 | -4.915 | -5.977 |
22/15 | -5.264 | -6.402 |
23/22 | +5.267 | +6.405 |
20/13 | -5.778 | -7.027 |
17/6 | +5.908 | +7.186 |
9/4 | -6.117 | -7.439 |
20/1 | -6.257 | -7.610 |
22/13 | -6.336 | -7.706 |
14/11 | -6.392 | -7.774 |
20/19 | -6.578 | -8.000 |
24/19 | +6.674 | +8.116 |
22/1 | -6.815 | -8.288 |
25/18 | +6.844 | +8.324 |
7/5 | -6.950 | -8.453 |
23/21 | +6.953 | +8.456 |
24/1 | +6.994 | +8.506 |
21/4 | +7.028 | +8.548 |
22/19 | -7.136 | -8.678 |
17/14 | -7.237 | -8.802 |
24/13 | +7.473 | +9.089 |
21/13 | -8.022 | -9.756 |
21/1 | -8.501 | -10.339 |
24/23 | +8.542 | +10.389 |
8/5 | +8.545 | +10.392 |
20/7 | -8.579 | -10.434 |
11/2 | +8.714 | +10.599 |
21/19 | -8.822 | -10.729 |
19/5 | -8.952 | -10.887 |
16/11 | +9.103 | +11.071 |
22/7 | -9.137 | -11.113 |
5/1 | +9.272 | +11.277 |
23/3 | +9.275 | +11.280 |
18/7 | +9.378 | +11.406 |
16/9 | -9.413 | -11.448 |
13/5 | -9.751 | -11.860 |
25/17 | -9.887 | -12.025 |
13/3 | +10.344 | +12.581 |
17/8 | +10.615 | +12.909 |
23/5 | -10.821 | -13.160 |
3/1 | -10.823 | -13.163 |
19/3 | +11.144 | +13.553 |
19/18 | -11.380 | -13.840 |
25/24 | +11.551 | +14.048 |
18/1 | +11.701 | +14.230 |
18/13 | +12.180 | +14.813 |
7/3 | +13.145 | +15.987 |
23/18 | -13.249 | -16.113 |
6/5 | +13.251 | +16.116 |
17/11 | -13.629 | -16.576 |
12/11 | +13.809 | +16.795 |
15/4 | +13.979 | +17.001 |
23/4 | +13.981 | +17.004 |
17/10 | -14.187 | -17.255 |
25/2 | -14.802 | -18.002 |
22/9 | +14.831 | +18.038 |
13/4 | +15.050 | +18.304 |
20/9 | +15.389 | +18.717 |
8/7 | +15.495 | +18.845 |
4/1 | -15.529 | -18.887 |
19/4 | +15.850 | +19.277 |
22/5 | -16.087 | -19.566 |
25/7 | +16.223 | +19.730 |
18/17 | -16.731 | -20.349 |
25/14 | -17.124 | -20.826 |
19/8 | -17.497 | -21.280 |
21/5 | -17.773 | -21.616 |
8/1 | +17.817 | +21.670 |
7/4 | +17.852 | +21.711 |
10/9 | -17.957 | -21.840 |
25/19 | +18.224 | +22.164 |
13/8 | -18.296 | -22.252 |
11/9 | -18.515 | -22.519 |
25/1 | +18.545 | +22.554 |
25/13 | +19.024 | +23.137 |
17/5 | +19.160 | +23.302 |
23/8 | -19.366 | -23.553 |
15/8 | -19.368 | -23.556 |
11/6 | +19.538 | +23.762 |
25/23 | +20.093 | +24.437 |
5/3 | +20.096 | +24.440 |
23/9 | +20.098 | +24.443 |
7/6 | -20.202 | -24.569 |
16/3 | -20.236 | -24.611 |
13/9 | +21.167 | +25.744 |
24/17 | -21.438 | -26.073 |
9/1 | -21.646 | -26.326 |
19/9 | +21.967 | +26.716 |
19/6 | -22.203 | -27.003 |
6/1 | +22.524 | +27.393 |
21/16 | +22.558 | +27.435 |
17/16 | -22.732 | -27.647 |
13/6 | -23.003 | -27.976 |
25/11 | -23.516 | -28.601 |
9/7 | -23.968 | -29.151 |
23/6 | -24.072 | -29.276 |
5/2 | -24.074 | -29.279 |
11/8 | +24.244 | +29.486 |
11/4 | -24.632 | -29.958 |
5/4 | +24.802 | +30.164 |
23/12 | +24.804 | +30.167 |
14/9 | -24.908 | -30.293 |
25/22 | +25.360 | +30.843 |
13/12 | +25.874 | +31.468 |
17/7 | +26.110 | +31.755 |
21/8 | -26.318 | -32.009 |
12/1 | -26.353 | -32.050 |
14/5 | +26.397 | +32.104 |
19/12 | +26.673 | +32.440 |
25/21 | +27.046 | +32.893 |
9/2 | +27.230 | +33.117 |
17/12 | -27.439 | -33.371 |
19/17 | -28.111 | -34.189 |
17/1 | +28.432 | +34.579 |
8/3 | +28.641 | +34.833 |
12/7 | -28.675 | -34.874 |
10/3 | -28.781 | -35.003 |
17/13 | +28.911 | +35.162 |
11/3 | -29.339 | -35.682 |
25/3 | +29.368 | +35.718 |
16/15 | -29.508 | -35.888 |
23/16 | +29.511 | +35.891 |
23/17 | -29.980 | -36.462 |
17/15 | +29.983 | +36.465 |
18/11 | -30.361 | -36.925 |
16/13 | -30.580 | -37.191 |
9/5 | -30.919 | -37.604 |
7/2 | -31.025 | -37.732 |
16/1 | -31.059 | -37.774 |
21/10 | +31.103 | +37.827 |
19/16 | +31.379 | +38.164 |
21/11 | +31.661 | +38.506 |
17/9 | -32.145 | -39.095 |
25/16 | -32.619 | -39.672 |
11/5 | +32.789 | +39.878 |
19/2 | -33.026 | -40.167 |
2/1 | +33.347 | +40.557 |
16/7 | -33.381 | -40.598 |
13/2 | -33.826 | -41.139 |
20/11 | +33.905 | +41.235 |
25/4 | +34.074 | +41.441 |
20/17 | -34.689 | -42.189 |
23/2 | -34.895 | -42.439 |
15/2 | -34.898 | -42.442 |
24/11 | -35.067 | -42.649 |
22/17 | -35.247 | -42.867 |
19/14 | -35.348 | -42.991 |
12/5 | -35.625 | -43.327 |
14/1 | +35.669 | +43.381 |
14/3 | -35.731 | -43.456 |
14/13 | +36.148 | +43.963 |
21/17 | -36.933 | -44.918 |
23/14 | -37.217 | -45.264 |
15/14 | -37.220 | -45.267 |
25/12 | -37.326 | -45.395 |
3/2 | +38.053 | +46.280 |
23/10 | +38.056 | +46.283 |
17/4 | -38.262 | -46.534 |
15/11 | +38.611 | +46.959 |
23/11 | +38.614 | +46.962 |
13/10 | +39.125 | +47.584 |
17/3 | +39.255 | +47.742 |
9/8 | -39.464 | -47.996 |
10/1 | -39.604 | -48.166 |
13/11 | +39.683 | +48.262 |
11/7 | +39.739 | +48.331 |
19/10 | +39.924 | +48.556 |
11/1 | -40.162 | -48.845 |
25/9 | +40.191 | +48.881 |
10/7 | +40.297 | +49.010 |
16/5 | -40.331 | -49.051 |
21/2 | +40.375 | +49.105 |
19/11 | +40.482 | +49.235 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
23/15 | +0.002 | +0.003 |
19/1 | +0.321 | +0.390 |
13/1 | -0.479 | -0.583 |
19/13 | +0.800 | +0.973 |
23/13 | -1.069 | -1.300 |
15/13 | -1.072 | -1.303 |
23/1 | -1.548 | -1.883 |
15/1 | -1.551 | -1.886 |
22/21 | +1.686 | +2.051 |
23/19 | -1.869 | -2.273 |
19/15 | +1.871 | +2.276 |
19/7 | -2.002 | -2.434 |
7/1 | +2.322 | +2.824 |
18/5 | +2.428 | +2.953 |
13/7 | -2.801 | -3.407 |
23/7 | -3.870 | -4.707 |
15/7 | -3.873 | -4.710 |
25/6 | -3.979 | -4.839 |
22/3 | +4.008 | +4.875 |
17/2 | -4.915 | -5.977 |
22/15 | -5.264 | -6.402 |
23/22 | +5.267 | +6.405 |
17/6 | +5.908 | +7.186 |
22/13 | -6.336 | -7.706 |
22/1 | -6.815 | -8.288 |
25/18 | +6.844 | +8.324 |
7/5 | -6.950 | -8.453 |
23/21 | +6.953 | +8.456 |
22/19 | -7.136 | -8.678 |
17/14 | -7.237 | -8.802 |
21/13 | -8.022 | -9.756 |
21/1 | -8.501 | -10.339 |
21/19 | -8.822 | -10.729 |
19/5 | -8.952 | -10.887 |
22/7 | -9.137 | -11.113 |
5/1 | +9.272 | +11.277 |
23/3 | +9.275 | +11.280 |
18/7 | +9.378 | +11.406 |
13/5 | -9.751 | -11.860 |
25/17 | -9.887 | -12.025 |
13/3 | +10.344 | +12.581 |
23/5 | -10.821 | -13.160 |
3/1 | -10.823 | -13.163 |
19/3 | +11.144 | +13.553 |
19/18 | -11.380 | -13.840 |
18/1 | +11.701 | +14.230 |
18/13 | +12.180 | +14.813 |
7/3 | +13.145 | +15.987 |
23/18 | -13.249 | -16.113 |
6/5 | +13.251 | +16.116 |
17/10 | -14.187 | -17.255 |
25/2 | -14.802 | -18.002 |
22/9 | +14.831 | +18.038 |
22/5 | -16.087 | -19.566 |
25/7 | +16.223 | +19.730 |
18/17 | -16.731 | -20.349 |
25/14 | -17.124 | -20.826 |
21/5 | -17.773 | -21.616 |
25/19 | +18.224 | +22.164 |
11/9 | -18.515 | -22.519 |
25/1 | +18.545 | +22.554 |
25/13 | +19.024 | +23.137 |
17/5 | +19.160 | +23.302 |
25/23 | +20.093 | +24.437 |
5/3 | +20.096 | +24.440 |
23/9 | +20.098 | +24.443 |
7/6 | -20.202 | -24.569 |
13/9 | +21.167 | +25.744 |
9/1 | -21.646 | -26.326 |
19/9 | +21.967 | +26.716 |
19/6 | -22.203 | -27.003 |
6/1 | +22.524 | +27.393 |
13/6 | -23.003 | -27.976 |
9/7 | -23.968 | -29.151 |
23/6 | -24.072 | -29.276 |
5/2 | -24.074 | -29.279 |
25/22 | +25.360 | +30.843 |
17/7 | +26.110 | +31.755 |
14/5 | +26.397 | +32.104 |
25/21 | +27.046 | +32.893 |
17/12 | -27.439 | -33.371 |
19/17 | -28.111 | -34.189 |
17/1 | +28.432 | +34.579 |
17/13 | +28.911 | +35.162 |
11/3 | -29.339 | -35.682 |
25/3 | +29.368 | +35.718 |
23/17 | -29.980 | -36.462 |
17/15 | +29.983 | +36.465 |
9/5 | -30.919 | -37.604 |
7/2 | -31.025 | -37.732 |
21/11 | +31.661 | +38.506 |
19/2 | -33.026 | -40.167 |
2/1 | +33.347 | +40.557 |
13/2 | -33.826 | -41.139 |
23/2 | -34.895 | -42.439 |
15/2 | -34.898 | -42.442 |
22/17 | -35.247 | -42.867 |
19/14 | -35.348 | -42.991 |
14/1 | +35.669 | +43.381 |
14/13 | +36.148 | +43.963 |
21/17 | -36.933 | -44.918 |
23/14 | -37.217 | -45.264 |
15/14 | -37.220 | -45.267 |
25/12 | -37.326 | -45.395 |
17/4 | -38.262 | -46.534 |
15/11 | +38.611 | +46.959 |
23/11 | +38.614 | +46.962 |
17/3 | +39.255 | +47.742 |
13/11 | +39.683 | +48.262 |
11/1 | -40.162 | -48.845 |
25/9 | +40.191 | +48.881 |
10/7 | +40.297 | +49.010 |
19/11 | +40.482 | +49.235 |
21/2 | -41.848 | -50.895 |
19/10 | -42.299 | -51.444 |
11/7 | -42.484 | -51.669 |
10/1 | +42.619 | +51.834 |
13/10 | -43.098 | -52.416 |
23/10 | -44.168 | -53.717 |
3/2 | -44.170 | -53.720 |
14/3 | +46.492 | +56.544 |
12/5 | +46.598 | +56.673 |
20/17 | +47.534 | +57.811 |
25/4 | -48.149 | -58.559 |
11/5 | -49.434 | -60.122 |
17/9 | +50.078 | +60.905 |
21/10 | -51.120 | -62.173 |
18/11 | +51.862 | +63.075 |
10/3 | +53.442 | +64.997 |
12/7 | +53.548 | +65.126 |
9/2 | -54.993 | -66.883 |
19/12 | -55.550 | -67.560 |
12/1 | +55.871 | +67.950 |
13/12 | -56.350 | -68.532 |
14/9 | +57.315 | +69.707 |
23/12 | -57.419 | -69.833 |
5/4 | -57.421 | -69.836 |
25/11 | +58.707 | +71.399 |
24/17 | +60.785 | +73.927 |
11/6 | -62.685 | -76.238 |
10/9 | +64.266 | +78.160 |
7/4 | -64.372 | -78.289 |
19/4 | -66.373 | -80.723 |
4/1 | +66.694 | +81.113 |
13/4 | -67.173 | -81.696 |
23/4 | -68.242 | -82.996 |
15/4 | -68.244 | -82.999 |
17/11 | +68.594 | +83.424 |
25/24 | -70.672 | -85.952 |
17/8 | -71.609 | -87.091 |
11/2 | -73.509 | -89.401 |
20/7 | +73.644 | +89.566 |
21/4 | -75.195 | -91.452 |
20/19 | +75.646 | +92.000 |
14/11 | +75.831 | +92.226 |
20/1 | +75.966 | +92.390 |
20/13 | +76.445 | +92.973 |
23/20 | -77.514 | -94.273 |
4/3 | +77.517 | +94.276 |
24/5 | +79.945 | +97.229 |
25/8 | -81.496 | -99.115 |
11/10 | -82.781 | -100.679 |
21/20 | -84.467 | -102.729 |
20/3 | +86.789 | +105.553 |
24/7 | +86.895 | +105.682 |
9/4 | -88.340 | -107.439 |
24/19 | +88.897 | +108.116 |
24/1 | +89.217 | +108.506 |
24/13 | +89.696 | +109.089 |
24/23 | +90.766 | +110.389 |
8/5 | +90.768 | +110.392 |
12/11 | +96.032 | +116.795 |
20/9 | +97.613 | +118.717 |
8/7 | +97.718 | +118.845 |
19/8 | -99.720 | -121.280 |
8/1 | +100.041 | +121.670 |
13/8 | -100.520 | -122.252 |
23/8 | -101.589 | -123.553 |
15/8 | -101.591 | -123.556 |
17/16 | -104.955 | -127.647 |
11/4 | -106.855 | -129.958 |
21/8 | -108.542 | -132.009 |
8/3 | +110.864 | +134.833 |
25/16 | -114.842 | -139.672 |
20/11 | +116.128 | +141.235 |
9/8 | -121.687 | -147.996 |
16/5 | +124.115 | +150.949 |
24/11 | +129.379 | +157.351 |
16/7 | +131.065 | +159.402 |
19/16 | -133.067 | -161.836 |
16/1 | +133.387 | +162.226 |
16/13 | +133.866 | +162.809 |
23/16 | -134.936 | -164.109 |
16/15 | +134.938 | +164.112 |
11/8 | -140.202 | -170.514 |
21/16 | -141.888 | -172.565 |
16/3 | +144.211 | +175.389 |
16/9 | +155.034 | +188.552 |
16/11 | +173.549 | +211.071 |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |