145edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET now computes most parameters automatically
Cleanup; update prime error table; update temperament list
Line 10: Line 10:


=== Prime harmonics ===
=== Prime harmonics ===
{{Primes in edo|145|columns=9}}
{{Harmonics in equal|145|intervals=prime|columns=11}}


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 62: Line 62:
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator<br>(Reduced)
! Cents<br>(reduced)
! Cents<br>(Reduced)
! Associated<br>ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
|-
|-
Line 77: Line 77:
| 12\145
| 12\145
| 99.31
| 99.31
| 35/33, 18/17
| 18/17
| [[Quinticosiennic]]
| [[Quinticosiennic]]
|-
|-
Line 84: Line 84:
| 115.86
| 115.86
| 77/72
| 77/72
| [[Mercy]] / [[countermiracle]]
| [[Countermiracle]]
|-
|-
| 1
| 1
Line 90: Line 90:
| 322.76
| 322.76
| 3087/2560
| 3087/2560
| [[Senior]] / [[seniority]]
| [[Seniority]] / senator
|-
|-
| 1
| 1
Line 96: Line 96:
| 339.31
| 339.31
| 128/105
| 128/105
| [[Amity]]
| [[Amity]] / catamite
|-
|-
| 5
| 5

Revision as of 11:01, 5 December 2022

← 144edo 145edo 146edo →
Prime factorization 5 × 29
Step size 8.27586 ¢ 
Fifth 85\145 (703.448 ¢) (→ 17\29)
Semitones (A1:m2) 15:10 (124.1 ¢ : 82.76 ¢)
Consistency limit 11
Distinct consistency limit 11

The 145 equal divisions of the octave (145edo) or 145(-tone) equal temperament (145tet, 145et) when viewed from a regular temperament perspective, is the tuning system derived by dividing the octave into 145 equal parts of 8.28 cents each.

Theory

145et tempers out 1600000/1594323 in the 5-limit; 4375/4374 and 5120/5103 in the 7-limit; 441/440 and 896/891 in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit; 595/594 in the 17-limit; 343/342 and 476/475 in the 19-limit.

It is the optimal patent val for the 11-limit mystery temperament and the 11-limit rank-3 pele temperament. It also supports and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows werckismic chords, because it tempers out 196/195 it allows mynucumic chords, because it tempers out 352/351 it allows minthmic chords, because it tempers out 364/363 it allows gentle chords, and because it tempers out 847/845 it allows the cuthbert triad, making it a very flexible harmonic system. The same is true of 232edo, the optimal patent val for 13-limit mystery.

The 145c val provides a tuning for magic which is nearly identical to the POTE tuning.

Prime harmonics

Approximation of prime harmonics in 145edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +1.49 +2.65 -0.55 +3.16 +3.61 +2.63 +0.42 +0.69 -3.37 -2.97
Relative (%) +0.0 +18.0 +32.0 -6.6 +38.2 +43.6 +31.8 +5.1 +8.4 -40.7 -35.8
Steps
(reduced)
145
(0)
230
(85)
337
(47)
407
(117)
502
(67)
537
(102)
593
(13)
616
(36)
656
(76)
704
(124)
718
(138)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 1600000/1594323, [28 -3 -10 [145 230 337]] -0.695 0.498 6.02
2.3.5.7 4375/4374, 5120/5103, 50421/50000 [145 230 337 407]] -0.472 0.578 6.99
2.3.5.7.11 441/440, 896/891, 3388/3375, 4375/4374 [145 230 337 407 502]] -0.561 0.547 6.61
2.3.5.7.11.13 196/195, 352/351, 364/363, 676/675, 4375/4374 [145 230 337 407 502 537]] -0.630 0.522 6.32
2.3.5.7.11.13.17 196/195, 256/255, 352/351, 364/363, 676/675, 1156/1155 [145 230 337 407 502 537 593]] -0.632 0.484 5.85

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 2\145 16.55 100/99 Quincy
1 12\145 99.31 18/17 Quinticosiennic
1 14\145 115.86 77/72 Countermiracle
1 39\145 322.76 3087/2560 Seniority / senator
1 41\145 339.31 128/105 Amity / catamite
5 67\145
(9\145)
554.48
(74.48)
11/8
(25/24)
Trisedodge / countdown
29 60\145
(2\145)
496.55
(16.55)
4/3
(100/99)
Mystery

Music