Fractional-octave temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
118th-octave temperaments: complete the data; normalize generators, correct mapping format; style
Normalize mappings and generators
Line 130: Line 130:


== 37th-octave temperaments ==
== 37th-octave temperaments ==
[[37edo|37EDO]] is accurate for harmonics 5, 7, 11, and 13, so various 37th-octave temperaments actually make sense.
[[37edo]] is accurate for harmonics 5, 7, 11, and 13, so various 37th-octave temperaments actually make sense.


=== Rubidium ===
=== Rubidium ===
The name of rubidium temperament comes from Rubidium, the 37th element.
The name of rubidium temperament comes from Rubidium, the 37th element.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 3136/3125, 4194304/4117715
[[Comma list]]: 3136/3125, 4194304/4117715


[[Mapping]]: [{{val|37 0 86 104}}, {{val|0 1 0 0}}]
[[Mapping]]: [{{val| 37 0 86 104 }}, {{val| 0 1 0 0 }}]
 
Mapping generators: ~50/49, ~3


[[POTE generator]]: ~3/2 = 703.3903
[[Optimal tuning]] ([[POTE]]): ~3/2 = 703.3903


{{Val list|legend=1| 37, 74, 111 }}
{{Val list|legend=1| 37, 74, 111 }}
Line 152: Line 154:
Comma list: 176/175, 1375/1372, 65536/65219
Comma list: 176/175, 1375/1372, 65536/65219


Mapping: [{{val|37 0 86 104 128}}, {{val|0 1 0 0 0}}]
Mapping: [{{val| 37 0 86 104 128 }}, {{val| 0 1 0 0 0 }}]


POTE generator: ~3/2 = 703.0355
Optimal tuning (POTE): ~3/2 = 703.0355


Vals: {{Val list| 37, 74, 111 }}
Optimal GPV sequence: {{Val list| 37, 74, 111 }}


Badness: 0.101001
Badness: 0.101001
Line 165: Line 167:
Comma list: 176/175, 640/637, 847/845, 1375/1372
Comma list: 176/175, 640/637, 847/845, 1375/1372


Mapping: [{{val|37 0 86 104 128 137}}, {{val|0 1 0 0 0 0}}]
Mapping: [{{val| 37 0 86 104 128 137 }}, {{val| 0 1 0 0 0 0 }}]


POTE generator: ~3/2 = 703.0520
Optimal tuning (POTE): ~3/2 = 703.0520


Vals: {{Val list| 37, 74, 111 }}
Optimal GPV sequence: {{Val list| 37, 74, 111 }}


Badness: 0.048732
Badness: 0.048732
Line 178: Line 180:
[[Comma list]]: 244140625/242121642, 283115520/282475249
[[Comma list]]: 244140625/242121642, 283115520/282475249


[[Mapping]]: [{{val|37 23 74 92}}, {{val|0 3 1 1}}]
[[Mapping]]: [{{val| 37 2 67 85 }}, {{val| 0 3 1 1 }}]
 
Mapping generator: ~50/49, ~24000/16807


[[POTE generator]]: ~5/4 = 385.3041
[[Optimal tuning]] ([[CTE]]): ~24000/16807 = 612.4003


{{Val list|legend=1| 37, 259b, 296, 629, 925c }}
{{Val list|legend=1| 37, 222b, 259b, 296, 629 }}


[[Badness]]: 0.784746
[[Badness]]: 0.784746
Line 191: Line 195:
Comma list: 1375/1372, 4000/3993, 226492416/226474325
Comma list: 1375/1372, 4000/3993, 226492416/226474325


Mapping: [{{val|37 23 74 92 128}}, {{val|0 3 1 1 0}}]
Mapping: [{{val| 37 2 67 85 128 }}, {{val| 0 3 1 1 0 }}]


POTE generator: ~5/4 = 385.3281
Optimal tuning (CTE): ~768/359 = 612.4003


Vals: {{Val list| 37, 259b, 296, 629 }}
Optimal GPV sequence: {{Val list| 37, 259b, 296, 629 }}


Badness: 0.167327
Badness: 0.167327
Line 204: Line 208:
Comma list: 625/624, 1375/1372, 4000/3993, 15379/15360
Comma list: 625/624, 1375/1372, 4000/3993, 15379/15360


Mapping: [{{val|37 23 74 92 128 125}}, {{val|0 3 1 1 0 1}}]
Mapping: [{{val| 37 2 67 85 128 118 }}, {{val| 0 3 1 1 0 1 }}]


POTE generator: ~5/4 = 385.3067
Optimal tuning (CTE): ~462/325 = 612.4206


Vals: {{Val list| 37, 259b, 296, 629f, 925cf }}
Optimal GPV sequence: {{Val list| 37, 259b, 296, 629f }}


Badness: 0.076183
Badness: 0.076183
Line 217: Line 221:
Comma list: 625/624, 715/714, 1225/1224, 4000/3993, 11271/11264
Comma list: 625/624, 715/714, 1225/1224, 4000/3993, 11271/11264


Mapping: [{{val|37 23 74 92 128 125 175}}, {{val|0 3 1 1 0 1 -2}}]
Mapping: [{{val| 37 2 67 85 128 118 189 }}, {{val| 0 3 1 1 0 1 -2 }}]


POTE generator: ~5/4 = 385.3427
Optimal tuning (CTE): ~121/85 = 612.4187


Vals: {{Val list| 37, 259b, 296, 629f }}
Optimal GPV sequence: {{Val list| 37, 259b, 296, 629f }}


Badness: 0.052475
Badness: 0.052475


== 65th-octave temperaments ==
== 65th-octave temperaments ==
[[65edo|65EDO]] is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.
[[65edo]] is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.


=== Terbium ===
=== Terbium ===
The name of terbium temperament comes from Terbium, the 65th element.
The name of terbium temperament comes from Terbium, the 65th element.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 32805/32768, 78732/78125
[[Comma list]]: 32805/32768, 78732/78125


[[Mapping]]: [{{val|65 103 151 0}}, {{val|0 0 0 1}}]
[[Mapping]]: [{{val| 65 103 151 0 }}, {{val| 0 0 0 1 }}]


[[POTE generator]]: ~8/7 = 230.8641
Mapping generators: ~81/80, ~7
 
[[Optimal tuning]] ([[POTE]]): ~7/4 = 969.1359


{{Val list|legend=1| 65, 130 }}
{{Val list|legend=1| 65, 130 }}
Line 248: Line 254:
Comma list: 243/242, 4000/3993, 5632/5625
Comma list: 243/242, 4000/3993, 5632/5625


Mapping: [{{val|65 103 151 0 225}}, {{val|0 0 0 1 0}}]
Mapping: [{{val| 65 103 151 0 225 }}, {{val| 0 0 0 1 0 }}]


POTE generator: ~8/7 = 230.4285
Optimal tuning (POTE): ~7/4 = 969.5715


Vals: {{Val list| 65d, 130 }}
Optimal GPV sequence: {{Val list| 65d, 130 }}


Badness: 0.059966
Badness: 0.059966
Line 261: Line 267:
Comma list: 243/242, 351/350, 2080/2079, 3584/3575
Comma list: 243/242, 351/350, 2080/2079, 3584/3575


Mapping: [{{val|65 103 151 0 225 58}}, {{val|0 0 0 1 0 1}}]
Mapping: [{{val| 65 103 151 0 225 58 }}, {{val| 0 0 0 1 0 1 }}]


POTE generator: ~8/7 = 230.0388
Optimal tuning (POTE): ~7/4 = 969.9612


Vals: {{Val list| 65d, 130 }}
Optimal GPV sequence: {{Val list| 65d, 130 }}


Badness: 0.036267
Badness: 0.036267


== 91st-octave temperaments ==
== 91st-octave temperaments ==
=== Protactinium ===
=== Protactinium ===
Defined as the 364 & 1547 temperament and named after the 91st element.
Protactinium is described as the 364 & 1547 temperament and named after the 91st element.


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 4096/4095, 91125/91091, 2912000/2910897, 369754/369603
Comma list: 4096/4095, 91125/91091, 369754/369603, 2912000/2910897


Mapping: [{{val|91 91 371 149 581 390}}, {{val|0 1 -3 -2 -5 -1}}]
Mapping: [{{val| 91 0 644 -33 1036 481 }}, {{val| 0 1 -3 -2 -5 -1 }}]


Mapping generators: ~1728/1715, ~3/2
Mapping generators: ~1728/1715, ~3


Optimal tuning (CTE): ~3/2 = 702.020c
Optimal tuning (CTE): ~3/2 = 702.0195


Optimal GPV sequence: {{EDOs|364, 1183, 1547}}
Optimal GPV sequence: {{Val list| 364, 819e, 1183, 1547 }}
====17-limit====
 
Badness: 0.0777
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384
Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384


Mapping: [<nowiki/>{{91 91 371 149 581 390 159}}, {{val|0 1 -3 -2 -5 -1 4}}]
Mapping: [{{val| 91 0 644 -33 1036 481 -205 }}, {{val| 0 1 -3 -2 -5 -1 4 }}]


Mapping generators: ~3773/3744, ~3/2
Optimal tuning (CTE): ~3/2 = 702.0269


Optimal tuning (CTE): ~3/2 = 702.027c
Optimal GPV sequence: {{Val list| 364, 1183, 1547, 1911 }}


Optimal GPV sequence: {{EDOs|364, 1183, 1547}}
Badness: 0.0582


== 118th-octave temperaments ==
== 118th-octave temperaments ==
Line 327: Line 335:
Optimal tuning (POTE): ~7/4 = 968.5117
Optimal tuning (POTE): ~7/4 = 968.5117


Vals: {{Val list| 118, 354, 472 }}
Optimal GPV sequence: {{Val list| 118, 354, 472 }}


Badness: 0.049316
Badness: 0.049316

Revision as of 18:07, 15 September 2022

All temperaments on this page have a fractional-octave period, such as 1\26, 1\31, or 1\41.

Temperaments discussed elsewhere include:

14th-octave temperaments

While 14edo is poor in LCJI harmonics, some of its multiples (such as 224edo and 742edo) are members of zeta edo list.

Silicon

The name of silicon temperament comes from the 14th element. Defined upwards to the 13-limit. In 742edo, what's also unique is that it is generated by a 53edo fifth intermingled with 14edo periods.

5-limit

Subgroup: 2.3.5

Comma list: [-145 112 -14

Mapping generators: ~282429536481/268435456000, ~3/2

Mapping: [14 14 -33], 0 1 8]]

Optimal tuning (CTE): ~3/2 = 701.864

7-limit

Subgroup: 2.3.5.7

Comma list: 14348907/14336000, 56358560858112/56296884765625

Mapping generators: ~6125/5832, ~3/2

Mapping: [14 14 -33 113], 0 1 8 -9]]

Optimal tuning (CTE): ~3/2 = 701.870

11-limit

Subgroup: 2.3.5.7.11

Comma list: 9801/9800, 1240029/1239040, 2359296/2358125

Mapping generators: ~605/576, ~3/2

Mapping: [14 14 -33 113 73], 0 1 8 -9 -3]]

Optimal tuning (CTE): ~3/2 = 701.872

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 4096/4095, 9801/9800, 67392/67375, 59535/59488

Mapping generators: ~104/99, ~3/2

Mapping: [14 14 -33 113 73 60], 0 1 8 -9 -3 -1]]

Optimal tuning (CTE): ~3/2 = 701.873

Vals: 70d, 224, 294, 448, 518, 672, 742, 966, 1190, 1260

37th-octave temperaments

37edo is accurate for harmonics 5, 7, 11, and 13, so various 37th-octave temperaments actually make sense.

Rubidium

The name of rubidium temperament comes from Rubidium, the 37th element.

Subgroup: 2.3.5.7

Comma list: 3136/3125, 4194304/4117715

Mapping: [37 0 86 104], 0 1 0 0]]

Mapping generators: ~50/49, ~3

Optimal tuning (POTE): ~3/2 = 703.3903

Template:Val list

Badness: 0.312105

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 1375/1372, 65536/65219

Mapping: [37 0 86 104 128], 0 1 0 0 0]]

Optimal tuning (POTE): ~3/2 = 703.0355

Optimal GPV sequence: Template:Val list

Badness: 0.101001

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 640/637, 847/845, 1375/1372

Mapping: [37 0 86 104 128 137], 0 1 0 0 0 0]]

Optimal tuning (POTE): ~3/2 = 703.0520

Optimal GPV sequence: Template:Val list

Badness: 0.048732

Triacontaheptoid

Subgroup: 2.3.5.7

Comma list: 244140625/242121642, 283115520/282475249

Mapping: [37 2 67 85], 0 3 1 1]]

Mapping generator: ~50/49, ~24000/16807

Optimal tuning (CTE): ~24000/16807 = 612.4003

Template:Val list

Badness: 0.784746

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 4000/3993, 226492416/226474325

Mapping: [37 2 67 85 128], 0 3 1 1 0]]

Optimal tuning (CTE): ~768/359 = 612.4003

Optimal GPV sequence: Template:Val list

Badness: 0.167327

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1375/1372, 4000/3993, 15379/15360

Mapping: [37 2 67 85 128 118], 0 3 1 1 0 1]]

Optimal tuning (CTE): ~462/325 = 612.4206

Optimal GPV sequence: Template:Val list

Badness: 0.076183

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 625/624, 715/714, 1225/1224, 4000/3993, 11271/11264

Mapping: [37 2 67 85 128 118 189], 0 3 1 1 0 1 -2]]

Optimal tuning (CTE): ~121/85 = 612.4187

Optimal GPV sequence: Template:Val list

Badness: 0.052475

65th-octave temperaments

65edo is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.

Terbium

The name of terbium temperament comes from Terbium, the 65th element.

Subgroup: 2.3.5.7

Comma list: 32805/32768, 78732/78125

Mapping: [65 103 151 0], 0 0 0 1]]

Mapping generators: ~81/80, ~7

Optimal tuning (POTE): ~7/4 = 969.1359

Template:Val list

Badness: 0.169778

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 4000/3993, 5632/5625

Mapping: [65 103 151 0 225], 0 0 0 1 0]]

Optimal tuning (POTE): ~7/4 = 969.5715

Optimal GPV sequence: Template:Val list

Badness: 0.059966

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 2080/2079, 3584/3575

Mapping: [65 103 151 0 225 58], 0 0 0 1 0 1]]

Optimal tuning (POTE): ~7/4 = 969.9612

Optimal GPV sequence: Template:Val list

Badness: 0.036267

91st-octave temperaments

Protactinium

Protactinium is described as the 364 & 1547 temperament and named after the 91st element.

Subgroup: 2.3.5.7.11.13

Comma list: 4096/4095, 91125/91091, 369754/369603, 2912000/2910897

Mapping: [91 0 644 -33 1036 481], 0 1 -3 -2 -5 -1]]

Mapping generators: ~1728/1715, ~3

Optimal tuning (CTE): ~3/2 = 702.0195

Optimal GPV sequence: Template:Val list

Badness: 0.0777

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384

Mapping: [91 0 644 -33 1036 481 -205], 0 1 -3 -2 -5 -1 4]]

Optimal tuning (CTE): ~3/2 = 702.0269

Optimal GPV sequence: Template:Val list

Badness: 0.0582

118th-octave temperaments

118edo is accurate for harmonics 3 and 5, so various 118th-octave temperaments actually make sense.

Parakleischis

118edo and its multiples are members of both parakleismic and schismic, and from this it derives its name.

Subgroup: 2.3.5.7

Comma list: 32805/32768, 1224440064/1220703125

Mapping: [118 187 274 0], 0 0 0 1]]

Mapping generators: ~15625/15552, ~7

Optimal tuning (POTE): ~7/4 = 968.7235

Template:Val list

Badness: 0.145166

11-limit

Subgroup: 2.3.5.7.11

Comma list: 9801/9800, 32805/32768, 137781/137500

Mapping: [118 187 274 0 77], 0 0 0 1 1]]

Optimal tuning (POTE): ~7/4 = 968.5117

Optimal GPV sequence: Template:Val list

Badness: 0.049316

Oganesson

Named after the 118th element, since a simpler temperament was already named. 82 periods plus a generator correspond to 13/8.

Subgroup: 2.3.5.7.11

Comma list: 32805/32768, 151263/151250, 1224440064/1220703125

Mapping: [118 187 274 0 -420], 0 0 0 2 5]]

Mapping generators: ~15625/15552, ~405504/153125

Optimal tuning (CTE): ~202752/153125 = 484.4837

Optimal GPV sequence: Template:Val list

Badness: 0.357

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 32805/32768, 34398/34375, 384912/384475

Mapping: [118 187 274 0 -420 271], 0 0 0 2 5 1]]

Optimal tuning (CTE): ~8125/6144 = 484.4867

Optimal GPV sequence: Template:Val list

Badness: 0.122