Dicot family: Difference between revisions
m simplify internal link |
Cmloegcmluin (talk | contribs) use wedgie monzo and val templates |
||
Line 1: | Line 1: | ||
The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is |-3 -1 2 | The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is {{monzo| -3 -1 2 }}, and flipping that yields {{wedgie| 2 1 -3}} for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val {{val|24 38 55}} (24c) and [[31edo]] using the val {{val|31 49 71}} (31c). In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an [[exotemperament]]. | ||
==Seven limit children== | ==Seven limit children== | ||
The second comma of the [[Normal_lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie | The second comma of the [[Normal_lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie {{wedgie|2 1 3 -3 -1 4}} adds 36/35, sharp with wedgie {{wedgie|2 1 6 -3 4 11}} adds 28/27, and dichotic with wedgie {{wedgie|2 1 -4 -3 -12 -12}} ads 64/63, all retaining the same period and generator. Decimal with wedgie {{wedgie|4 2 2 -6 -8 -1}} adds 49/48, sidi with wedgie {{wedgie|4 2 9 -3 6 15}} adds 245/243, and jamesbond with wedgie {{wedgie|0 0 7 0 11 16}} adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. | ||
=Dicot= | =Dicot= | ||
Line 9: | Line 9: | ||
[[POTE tuning|POTE generator]]: ~5/4 = 348.594 | [[POTE tuning|POTE generator]]: ~5/4 = 348.594 | ||
[[Map]]: [ | [[Map]]: [{{val|1 1 2}}, {{val|0 2 1}}] | ||
{{Vals|legend=1| 3, 4, 7, 17, 24c, 31c }} | {{Vals|legend=1| 3, 4, 7, 17, 24c, 31c }} | ||
Line 20: | Line 20: | ||
[[POTE tuning|POTE generator]]: ~5/4 = 336.381 | [[POTE tuning|POTE generator]]: ~5/4 = 336.381 | ||
[[Map]]: [ | [[Map]]: [{{val|1 1 2 2}}, {{val|0 2 1 3}}] | ||
Wedgie: | Wedgie: {{wedgie|2 1 3 -3 -1 4}} | ||
{{Vals|legend=1| 3d, 4, 7, 18bc, 25bccd }} | {{Vals|legend=1| 3d, 4, 7, 18bc, 25bccd }} | ||
Line 33: | Line 33: | ||
POTE generator: ~5/4 = 342.125 | POTE generator: ~5/4 = 342.125 | ||
Map: [ | Map: [{{val|1 1 2 2 2}}, {{val|0 2 1 3 5}}] | ||
Vals: {{Vals| 3de, 4e, 7 }} | Vals: {{Vals| 3de, 4e, 7 }} | ||
Line 44: | Line 44: | ||
POTE generator: ~5/4 = 336.051 | POTE generator: ~5/4 = 336.051 | ||
Map: [ | Map: [{{val|1 1 2 2 4}}, {{val|0 2 1 3 -2}}] | ||
Vals: {{Vals| 3d, 4, 7, 18bc, 25bccd }} | Vals: {{Vals| 3d, 4, 7, 18bc, 25bccd }} | ||
Line 55: | Line 55: | ||
POTE generator: ~5/4 = 338.846 | POTE generator: ~5/4 = 338.846 | ||
Map: [ | Map: [{{val|1 1 2 2 4 4}}, {{val|0 2 1 3 -2 -1}}] | ||
Vals: {{Vals| 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef }} | Vals: {{Vals| 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef }} | ||
Line 66: | Line 66: | ||
[[POTE tuning|POTE generator]]: ~5/4 = 331.916 | [[POTE tuning|POTE generator]]: ~5/4 = 331.916 | ||
[[Map]]: [ | [[Map]]: [{{val|1 1 2 3}}, {{val|0 2 1 -1}}] | ||
Wedgie: | Wedgie: {{wedgie|2 1 -1 -3 -7 -5}} | ||
{{Vals|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | {{Vals|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | ||
Line 79: | Line 79: | ||
POTE generator: ~5/4 = 337.532 | POTE generator: ~5/4 = 337.532 | ||
Map: [ | Map: [{{val|1 1 2 3 4}}, {{val|0 2 1 -1 -2}}] | ||
Vals: {{Vals| 3, 4, 7d }} | Vals: {{Vals| 3, 4, 7d }} | ||
Line 90: | Line 90: | ||
POTE generator: ~5/4 = 341.023 | POTE generator: ~5/4 = 341.023 | ||
Map: [ | Map: [{{val|1 1 2 3 4 4}}, {{val|0 2 1 -1 -2 -1}}] | ||
Vals: {{Vals| 3, 4, 7d }} | Vals: {{Vals| 3, 4, 7d }} | ||
Line 101: | Line 101: | ||
[[POTE tuning|POTE generator]]: ~5/4 = 357.938 | [[POTE tuning|POTE generator]]: ~5/4 = 357.938 | ||
[[Map]]: [ | [[Map]]: [{{val|1 1 2 1}}, {{val|0 2 1 6}}] | ||
Wedgie: | Wedgie: {{wedgie|2 1 6 -3 4 11}} | ||
{{Vals|legend=1| 3d, 7d, 10, 37cd, 47bccd, 57bccdd }} | {{Vals|legend=1| 3d, 7d, 10, 37cd, 47bccd, 57bccdd }} | ||
Line 114: | Line 114: | ||
POTE generator: ~5/4 = 356.106 | POTE generator: ~5/4 = 356.106 | ||
Map: [ | Map: [{{val|1 1 2 1 2}}, {{val|0 2 1 6 5}}] | ||
Vals: {{Vals| 3de, 7d, 10, 17d, 27cde }} | Vals: {{Vals| 3de, 7d, 10, 17d, 27cde }} | ||
Line 125: | Line 125: | ||
[[POTE tuning|POTE generator]]: ~7/6 = 251.557 | [[POTE tuning|POTE generator]]: ~7/6 = 251.557 | ||
[[Map]]: [ | [[Map]]: [{{val|2 0 3 4}}, {{val|0 2 1 1}}] | ||
Wedgie: | Wedgie: {{wedgie|4 2 2 -6 -8 -1}} | ||
{{Vals|legend=1| 4, 10, 14c, 24c, 38ccd, 62cccdd }} | {{Vals|legend=1| 4, 10, 14c, 24c, 38ccd, 62cccdd }} | ||
Line 138: | Line 138: | ||
POTE generator: ~7/6 = 253.493 | POTE generator: ~7/6 = 253.493 | ||
Map: [ | Map: [{{val|2 0 3 4 -1}}, {{val|0 2 1 1 5}}] | ||
Vals: {{Vals| 10, 14c, 24c, 38ccd, 52cccde }} | Vals: {{Vals| 10, 14c, 24c, 38ccd, 52cccde }} | ||
Line 149: | Line 149: | ||
POTE generator: ~7/6 = 255.066 | POTE generator: ~7/6 = 255.066 | ||
Map: [ | Map: [{{val|2 0 3 4 10}}, {{val|0 2 1 1 -2}}] | ||
Vals: {{Vals| 4, 10e, 14c }} | Vals: {{Vals| 4, 10e, 14c }} | ||
Line 160: | Line 160: | ||
POTE generator: ~8/7 = 243.493 | POTE generator: ~8/7 = 243.493 | ||
Map: [ | Map: [{{val|2 0 3 4 7}}, {{val|0 2 1 1 0}}] | ||
Vals: {{Vals| 4, 6, 10 }} | Vals: {{Vals| 4, 6, 10 }} | ||
Line 171: | Line 171: | ||
[[POTE tuning|POTE generator]]: ~5/4 = 356.264 | [[POTE tuning|POTE generator]]: ~5/4 = 356.264 | ||
[[Map]]: [ | [[Map]]: [{{val|1 1 2 4}}, {{val|0 2 1 -4}}] | ||
Wedgie: | Wedgie: {{wedgie|2 1 -4 -3 -12 -12}} | ||
{{Vals|legend=1| 3, 7, 10, 17, 27c, 37c, 64bccc }} | {{Vals|legend=1| 3, 7, 10, 17, 27c, 37c, 64bccc }} | ||
Line 184: | Line 184: | ||
POTE generator: ~5/4 = 354.262 | POTE generator: ~5/4 = 354.262 | ||
Map: [ | Map: [{{val|1 1 2 4 2}}, {{val|0 2 1 -4 5}}] | ||
Vals: {{Vals| 7, 10, 17, 27ce, 44cce }} | Vals: {{Vals| 7, 10, 17, 27ce, 44cce }} | ||
Line 195: | Line 195: | ||
POTE generator: ~5/4 = 360.659 | POTE generator: ~5/4 = 360.659 | ||
Map: [ | Map: [{{val|1 1 2 4 5}}, {{val|0 2 1 -4 -5}}] | ||
Vals: {{Vals| 3, 7e, 10 }} | Vals: {{Vals| 3, 7e, 10 }} | ||
Line 206: | Line 206: | ||
[[POTE tuning|POTE generator]]: ~8/7 = 258.139 | [[POTE tuning|POTE generator]]: ~8/7 = 258.139 | ||
[[Map]]: [ | [[Map]]: [{{val|7 11 16 0}}, {{val|0 0 0 1}}] | ||
Wedgie: | Wedgie: {{wedgie|0 0 7 0 11 16}} | ||
{{Vals|legend=1| 7, 14c }} | {{Vals|legend=1| 7, 14c }} | ||
Line 219: | Line 219: | ||
POTE generator: ~8/7 = 258.910 | POTE generator: ~8/7 = 258.910 | ||
Map: [ | Map: [{{val|7 11 16 0 24}}, {{val|0 0 0 1 0}}] | ||
Vals: {{Vals| 7, 14c }} | Vals: {{Vals| 7, 14c }} | ||
Line 230: | Line 230: | ||
POTE generator: ~8/7 = 250.764 | POTE generator: ~8/7 = 250.764 | ||
Map: [ | Map: [{{val|7 11 16 0 24 26}}, {{val|0 0 0 1 0 0}}] | ||
Vals: {{Vals| 7, 14c }} | Vals: {{Vals| 7, 14c }} | ||
Line 241: | Line 241: | ||
POTE generator: ~8/7 = 247.445 | POTE generator: ~8/7 = 247.445 | ||
Map: [ | Map: [{{val|7 11 16 0 24 6}}, {{val|0 0 0 1 0 1}}] | ||
Vals: {{Vals| 7, 14cf }} | Vals: {{Vals| 7, 14cf }} | ||
Line 252: | Line 252: | ||
[[POTE tuning|POTE generator]]: ~9/7 = 427.208 | [[POTE tuning|POTE generator]]: ~9/7 = 427.208 | ||
[[Map]]: [ | [[Map]]: [{{val|1 3 3 6}}, {{val|0 -4 -2 -9}}] | ||
Wedgie: | Wedgie: {{wedgie|4 2 9 -12 3 15}} | ||
{{Vals|legend=1| 3d, 14c, 45cc, 59bcccd }} | {{Vals|legend=1| 3d, 14c, 45cc, 59bcccd }} | ||
Line 265: | Line 265: | ||
POTE generator: ~9/7 = 427.273 | POTE generator: ~9/7 = 427.273 | ||
Map: [ | Map: [{{val|1 3 3 6 7}}, {{val|0 -4 -2 -9 -10}}] | ||
Vals: {{Vals| 3de, 14c, 17, 45cce, 59bcccdee }} | Vals: {{Vals| 3de, 14c, 17, 45cce, 59bcccdee }} | ||
Line 276: | Line 276: | ||
[[POTE tuning|POTE generator]]: ~8/7 = 324.482 | [[POTE tuning|POTE generator]]: ~8/7 = 324.482 | ||
[[Map]]: [ | [[Map]]: [{{val|4 6 9 0}}, {{val|0 0 0 1}}] | ||
Wedgie: | Wedgie: {{wedgie|0 0 4 0 6 9}} | ||
{{Vals|legend=1| 4 }} | {{Vals|legend=1| 4 }} |
Revision as of 16:24, 26 April 2021
The 5-limit parent comma for the dicot family is 25/24, the chromatic semitone. Its monzo is [-3 -1 2⟩, and flipping that yields ⟨⟨2 1 -3]] for the wedgie. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are 7edo, 24edo using the val ⟨24 38 55] (24c) and 31edo using the val ⟨31 49 71] (31c). In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an exotemperament.
Seven limit children
The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot, with wedgie ⟨⟨2 1 3 -3 -1 4]] adds 36/35, sharp with wedgie ⟨⟨2 1 6 -3 4 11]] adds 28/27, and dichotic with wedgie ⟨⟨2 1 -4 -3 -12 -12]] ads 64/63, all retaining the same period and generator. Decimal with wedgie ⟨⟨4 2 2 -6 -8 -1]] adds 49/48, sidi with wedgie ⟨⟨4 2 9 -3 6 15]] adds 245/243, and jamesbond with wedgie ⟨⟨0 0 7 0 11 16]] adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
Dicot
Comma: 25/24
POTE generator: ~5/4 = 348.594
Map: [⟨1 1 2], ⟨0 2 1]]
Optimal ET sequence: 3, 4, 7, 17, 24c, 31c
Badness: 0.013028
7-limit
Comma list: 15/14, 25/24
POTE generator: ~5/4 = 336.381
Map: [⟨1 1 2 2], ⟨0 2 1 3]]
Wedgie: ⟨⟨2 1 3 -3 -1 4]]
Optimal ET sequence: 3d, 4, 7, 18bc, 25bccd
Badness: 0.019935
11-limit
Comma list: 15/14, 22/21, 25/24
POTE generator: ~5/4 = 342.125
Map: [⟨1 1 2 2 2], ⟨0 2 1 3 5]]
Badness: 0.019854
Eudicot
Comma list: 15/14, 25/24, 33/32
POTE generator: ~5/4 = 336.051
Map: [⟨1 1 2 2 4], ⟨0 2 1 3 -2]]
Badness: 0.027114
13-limit
Comma list: 15/14, 25/24, 33/32, 40/39
POTE generator: ~5/4 = 338.846
Map: [⟨1 1 2 2 4 4], ⟨0 2 1 3 -2 -1]]
Vals: 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef
Badness: 0.023828
Flat
Comma list: 21/20, 25/24
POTE generator: ~5/4 = 331.916
Map: [⟨1 1 2 3], ⟨0 2 1 -1]]
Wedgie: ⟨⟨2 1 -1 -3 -7 -5]]
Optimal ET sequence: 3, 4, 7d, 11cd, 18bcddd
Badness: 0.025381
11-limit
Comma list: 21/20, 25/24, 33/32
POTE generator: ~5/4 = 337.532
Map: [⟨1 1 2 3 4], ⟨0 2 1 -1 -2]]
Badness: 0.024988
13-limit
Comma list: 14/13, 21/20, 25/24, 33/32
POTE generator: ~5/4 = 341.023
Map: [⟨1 1 2 3 4 4], ⟨0 2 1 -1 -2 -1]]
Badness: 0.023420
Sharp
Comma list: 25/24, 28/27
POTE generator: ~5/4 = 357.938
Map: [⟨1 1 2 1], ⟨0 2 1 6]]
Wedgie: ⟨⟨2 1 6 -3 4 11]]
Optimal ET sequence: 3d, 7d, 10, 37cd, 47bccd, 57bccdd
Badness: 0.028942
11-limit
Comma list: 25/24, 28/27, 35/33
POTE generator: ~5/4 = 356.106
Map: [⟨1 1 2 1 2], ⟨0 2 1 6 5]]
Badness: 0.022366
Decimal
Comma list: 25/24, 49/48
POTE generator: ~7/6 = 251.557
Map: [⟨2 0 3 4], ⟨0 2 1 1]]
Wedgie: ⟨⟨4 2 2 -6 -8 -1]]
Optimal ET sequence: 4, 10, 14c, 24c, 38ccd, 62cccdd
Badness: 0.028334
11-limit
Comma list: 25/24, 45/44, 49/48
POTE generator: ~7/6 = 253.493
Map: [⟨2 0 3 4 -1], ⟨0 2 1 1 5]]
Vals: 10, 14c, 24c, 38ccd, 52cccde
Badness: 0.026712
Decimated
Comma list: 25/24, 33/32, 49/48
POTE generator: ~7/6 = 255.066
Map: [⟨2 0 3 4 10], ⟨0 2 1 1 -2]]
Badness: 0.031456
Decibel
Comma list: 25/24, 35/33, 49/48
POTE generator: ~8/7 = 243.493
Map: [⟨2 0 3 4 7], ⟨0 2 1 1 0]]
Badness: 0.032385
Dichotic
Comma list: 25/24, 64/63
POTE generator: ~5/4 = 356.264
Map: [⟨1 1 2 4], ⟨0 2 1 -4]]
Wedgie: ⟨⟨2 1 -4 -3 -12 -12]]
Optimal ET sequence: 3, 7, 10, 17, 27c, 37c, 64bccc
Badness: 0.037565
11-limit
Comma list: 25/24, 45/44, 64/63
POTE generator: ~5/4 = 354.262
Map: [⟨1 1 2 4 2], ⟨0 2 1 -4 5]]
Badness: 0.030680
Dichosis
Comma list: 25/24, 35/33, 64/63
POTE generator: ~5/4 = 360.659
Map: [⟨1 1 2 4 5], ⟨0 2 1 -4 -5]]
Badness: 0.041361
Jamesbond
Comma list: 25/24, 81/80
POTE generator: ~8/7 = 258.139
Map: [⟨7 11 16 0], ⟨0 0 0 1]]
Wedgie: ⟨⟨0 0 7 0 11 16]]
Badness: 0.041714
11-limit
Comma list: 25/24, 33/32, 45/44
POTE generator: ~8/7 = 258.910
Map: [⟨7 11 16 0 24], ⟨0 0 0 1 0]]
Badness: 0.023524
13-limit
Comma list: 25/24, 27/26, 33/32, 40/39
POTE generator: ~8/7 = 250.764
Map: [⟨7 11 16 0 24 26], ⟨0 0 0 1 0 0]]
Badness: 0.023003
Septimal
Comma list: 25/24, 33/32, 45/44, 65/63
POTE generator: ~8/7 = 247.445
Map: [⟨7 11 16 0 24 6], ⟨0 0 0 1 0 1]]
Badness: 0.022569
Sidi
Comma list: 25/24, 245/243
POTE generator: ~9/7 = 427.208
Map: [⟨1 3 3 6], ⟨0 -4 -2 -9]]
Wedgie: ⟨⟨4 2 9 -12 3 15]]
Optimal ET sequence: 3d, 14c, 45cc, 59bcccd
Badness: 0.056586
11-limit
Comma list: 25/24, 45/44, 99/98
POTE generator: ~9/7 = 427.273
Map: [⟨1 3 3 6 7], ⟨0 -4 -2 -9 -10]]
Vals: 3de, 14c, 17, 45cce, 59bcccdee
Badness: 0.032957
Quad
Comma list: 9/8, 25/24
POTE generator: ~8/7 = 324.482
Map: [⟨4 6 9 0], ⟨0 0 0 1]]
Wedgie: ⟨⟨0 0 4 0 6 9]]
Badness: 0.045911