Vulture family: Difference between revisions
Cmloegcmluin (talk | contribs) "optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence |
Update keys |
||
Line 8: | Line 8: | ||
[[Comma list]]: 10485760000/10460353203 | [[Comma list]]: 10485760000/10460353203 | ||
{{Mapping|legend=1| 1 0 -6 | 0 4 21 }} | |||
: mapping generators: ~2, ~320/243 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~320/243 = 475.5426 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~320/243 = 475.5426 | ||
Line 25: | Line 25: | ||
[[Comma list]]: 4375/4374, 33554432/33480783 | [[Comma list]]: 4375/4374, 33554432/33480783 | ||
{{Mapping|legend=1| 1 0 -6 25 | 0 4 21 -56 }} | |||
{{Multival|legend=1| 4 21 -56 24 -100 -189 }} | {{Multival|legend=1| 4 21 -56 24 -100 -189 }} | ||
Line 40: | Line 40: | ||
Comma list: 4375/4374, 5632/5625, 41503/41472 | Comma list: 4375/4374, 5632/5625, 41503/41472 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 25 -33 | 0 4 21 -56 92 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5567 | Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5567 | ||
Line 53: | Line 53: | ||
Comma list: 676/675, 1001/1000, 4096/4095, 4375/4374 | Comma list: 676/675, 1001/1000, 4096/4095, 4375/4374 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 25 -33 -7 | 0 4 21 -56 92 27 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5572 | Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5572 | ||
Line 66: | Line 66: | ||
Comma list: 676/675, 936/935, 1001/1000, 1225/1224, 4096/4095 | Comma list: 676/675, 936/935, 1001/1000, 1225/1224, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 25 -33 -7 35 | 0 4 21 -56 92 27 -78 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~112/85 = 475.5617 | Optimal tuning (POTE): ~2 = 1\1, ~112/85 = 475.5617 | ||
Line 79: | Line 79: | ||
Comma list: 676/675, 936/935, 1001/1000, 1216/1215, 1225/1224, 1540/1539 | Comma list: 676/675, 936/935, 1001/1000, 1216/1215, 1225/1224, 1540/1539 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 25 -33 -7 35 -12 | 0 4 21 -56 92 27 -78 41 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~25/19 = 475.5615 | Optimal tuning (POTE): ~2 = 1\1, ~25/19 = 475.5615 | ||
Line 92: | Line 92: | ||
Comma list: 3025/3024, 4375/4374, 33554432/33480783 | Comma list: 3025/3024, 4375/4374, 33554432/33480783 | ||
Mapping: | Mapping: {{mapping| 2 0 -12 50 41 | 0 4 21 -56 -43 }} | ||
: mapping generators: ~99/70, ~320/243 | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~320/243 = 475.550 | Optimal tuning (POTE): ~99/70 = 1\2, ~320/243 = 475.550 | ||
Line 107: | Line 107: | ||
Comma list: 676/675, 3025/3024, 4096/4095, 4375/4374 | Comma list: 676/675, 3025/3024, 4096/4095, 4375/4374 | ||
Mapping: | Mapping: {{mapping| 2 0 -12 50 41 -14 | 0 4 21 -56 -43 27 }} | ||
Optimal tuning (POTE): ~99/70 = 1\2, ~320/243 = 475.553 | Optimal tuning (POTE): ~99/70 = 1\2, ~320/243 = 475.553 | ||
Line 118: | Line 118: | ||
{{Main| Buzzard }} | {{Main| Buzzard }} | ||
Buzzard is an alternative lower complexity extension to vulture, but more of a full 13-limit system in its own right. It can be described as 53 & 58. As one might expect, 111edo is a great tuning for it. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 124: | Line 124: | ||
[[Comma list]]: 1728/1715, 5120/5103 | [[Comma list]]: 1728/1715, 5120/5103 | ||
{{Mapping|legend=1| 1 0 -6 4 | 0 4 21 -3 }} | |||
{{Multival|legend=1| 4 21 -3 24 -16 -66 }} | {{Multival|legend=1| 4 21 -3 24 -16 -66 }} | ||
Line 139: | Line 139: | ||
Comma list: 176/175, 540/539, 5120/5103 | Comma list: 176/175, 540/539, 5120/5103 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 4 -12 | 0 4 21 -3 39 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.700 | Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.700 | ||
Line 152: | Line 152: | ||
Comma list: 176/175, 351/350, 540/539, 676/675 | Comma list: 176/175, 351/350, 540/539, 676/675 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 4 -12 -7 | 0 4 21 -3 39 27 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.697 | Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.697 | ||
Line 165: | Line 165: | ||
Comma list: 176/175, 256/255, 351/350, 442/441, 540/539 | Comma list: 176/175, 256/255, 351/350, 442/441, 540/539 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 4 -12 -7 14 | 0 4 21 -3 39 27 -25 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.692 | Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.692 | ||
Line 178: | Line 178: | ||
Comma list: 176/175, 256/255, 286/285, 324/323, 351/350, 540/539 | Comma list: 176/175, 256/255, 286/285, 324/323, 351/350, 540/539 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 4 -12 -7 14 -12 | 0 4 21 -3 39 27 -25 41 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.679 | Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.679 | ||
Line 191: | Line 191: | ||
Comma list: 99/98, 385/384, 2200/2187 | Comma list: 99/98, 385/384, 2200/2187 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 4 9 | 0 4 21 -3 -14 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.436 | Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.436 | ||
Line 204: | Line 204: | ||
Comma list: 99/98, 275/273, 385/384, 572/567 | Comma list: 99/98, 275/273, 385/384, 572/567 | ||
Mapping: | Mapping: {{mapping| 1 0 -6 4 9 -7 | 0 4 21 -3 -14 27 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.464 | Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.464 | ||
Line 217: | Line 217: | ||
[[Comma list]]: 10976/10935, 40353607/40000000 | [[Comma list]]: 10976/10935, 40353607/40000000 | ||
{{Mapping|legend=1| 1 8 36 29 | 0 -12 -63 -49 }} | |||
{{Multival|legend=1| 12 63 49 72 44 -63 }} | {{Multival|legend=1| 12 63 49 72 44 -63 }} | ||
Line 232: | Line 232: | ||
Comma list: 441/440, 4000/3993, 10976/10935 | Comma list: 441/440, 4000/3993, 10976/10935 | ||
Mapping: | Mapping: {{mapping| 1 8 36 29 35 | 0 -12 -63 -49 -59 }} | ||
Optimal tuning (POTE): ~2 = 1\1, 81/56 = 641.4822 | Optimal tuning (POTE): ~2 = 1\1, 81/56 = 641.4822 | ||
Line 245: | Line 245: | ||
Comma list: 364/363, 441/440, 676/675, 10976/10935 | Comma list: 364/363, 441/440, 676/675, 10976/10935 | ||
Mapping: | Mapping: {{mapping| 1 8 36 29 35 47 | 0 -12 -63 -49 -59 -81 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4797 | Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4797 | ||
Line 258: | Line 258: | ||
Comma list: 364/363, 441/440, 595/594, 676/675, 8624/8619 | Comma list: 364/363, 441/440, 595/594, 676/675, 8624/8619 | ||
Mapping: | Mapping: {{mapping| 1 8 36 29 35 47 -5 | 0 -12 -63 -49 -59 -81 17 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4794 | Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4794 | ||
Line 271: | Line 271: | ||
[[Comma list]]: 2401/2400, 10485760000/10460353203 | [[Comma list]]: 2401/2400, 10485760000/10460353203 | ||
{{Mapping|legend=1| 2 4 9 8 | 0 -8 -42 -23 }} | |||
: mapping generators: ~177147/125440, ~28/27 | |||
{{Multival|legend=1|16 84 46 96 28 -129}} | {{Multival|legend=1|16 84 46 96 28 -129}} | ||
Line 288: | Line 288: | ||
Comma list: 2401/2400, 9801/9800, 19712/19683 | Comma list: 2401/2400, 9801/9800, 19712/19683 | ||
Mapping: | Mapping: {{mapping| 2 4 9 8 12 | 0 -8 -42 -23 -49 }} | ||
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.224 | Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.224 | ||
Line 301: | Line 301: | ||
Comma list: 676/675, 1001/1000, 1716/1715, 10648/10647 | Comma list: 676/675, 1001/1000, 1716/1715, 10648/10647 | ||
Mapping: | Mapping: {{mapping| 2 4 9 8 12 13 | 0 -8 -42 -23 -49 -54 }} | ||
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.220 | Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.220 | ||
Line 314: | Line 314: | ||
[[Comma list]]: 4802000/4782969, 5250987/5242880 | [[Comma list]]: 4802000/4782969, 5250987/5242880 | ||
{{Mapping|legend=1| 1 8 36 0 | 0 -16 -84 7 }} | |||
{{Multival|legend=1|16 84 -7 96 -56 -252}} | {{Multival|legend=1|16 84 -7 96 -56 -252}} | ||
Line 329: | Line 329: | ||
Comma list: 19712/19683, 42875/42768, 160083/160000 | Comma list: 19712/19683, 42875/42768, 160083/160000 | ||
Mapping: | Mapping: {{mapping| 1 8 36 0 64 | 0 -16 -84 7 -151 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.120 | Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.120 | ||
Line 342: | Line 342: | ||
Comma list: 676/675, 1001/1000, 19712/19683, 31213/31104 | Comma list: 676/675, 1001/1000, 19712/19683, 31213/31104 | ||
Mapping: | Mapping: {{mapping| 1 8 36 0 64 47 | 0 -16 -84 7 -151 -108 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.118 | Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.118 | ||
Line 352: | Line 352: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Vulture family| ]] <!-- main article --> | [[Category:Vulture family| ]] <!-- main article --> | ||
[[Category:Vulture| ]] <!-- key article --> | |||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Revision as of 11:14, 13 September 2023
The vulture family of temperaments tempers out the vulture comma, [24 -21 4⟩ = 10485760000/10460353203, a small 5-limit comma of 4.2 cents.
Temperaments discussed elsewhere includes terture.
Vulture
Subgroup: 2.3.5
Comma list: 10485760000/10460353203
Mapping: [⟨1 0 -6], ⟨0 4 21]]
- mapping generators: ~2, ~320/243
Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5426
Optimal ET sequence: 53, 164, 217, 270, 323, 2531, 2854b, 3177b, 3500b, 3823b, 4146b, 4469b
Badness: 0.041431
Septimal vulture
The vulture temperament can be described as the 53 & 217 temperament, tempering out the ragisma, 4375/4374 and the garischisma, [25 -14 0 -1⟩ = 33554432/33480783 aside from the vulture comma. 270edo is a good tuning for this temperament, with generator 107/270, and mos scales of 3, 5, 8, 13, 18, 23, 28, 33, 38, 43, 48, or 53 notes are available.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 33554432/33480783
Mapping: [⟨1 0 -6 25], ⟨0 4 21 -56]]
Wedgie: ⟨⟨ 4 21 -56 24 -100 -189 ]]
Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5511
Optimal ET sequence: 53, 164, 217, 270, 593, 863, 1133
Badness: 0.036985
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 5632/5625, 41503/41472
Mapping: [⟨1 0 -6 25 -33], ⟨0 4 21 -56 92]]
Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5567
Optimal ET sequence: 53, 217, 270
Badness: 0.031907
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 4096/4095, 4375/4374
Mapping: [⟨1 0 -6 25 -33 -7], ⟨0 4 21 -56 92 27]]
Optimal tuning (POTE): ~2 = 1\1, ~320/243 = 475.5572
Optimal ET sequence: 53, 217, 270
Badness: 0.018758
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 676/675, 936/935, 1001/1000, 1225/1224, 4096/4095
Mapping: [⟨1 0 -6 25 -33 -7 35], ⟨0 4 21 -56 92 27 -78]]
Optimal tuning (POTE): ~2 = 1\1, ~112/85 = 475.5617
Optimal ET sequence: 53, 217, 270, 487, 757g
Badness: 0.020103
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 936/935, 1001/1000, 1216/1215, 1225/1224, 1540/1539
Mapping: [⟨1 0 -6 25 -33 -7 35 -12], ⟨0 4 21 -56 92 27 -78 41]]
Optimal tuning (POTE): ~2 = 1\1, ~25/19 = 475.5615
Optimal ET sequence: 53, 217, 270, 487, 757g
Badness: 0.013850
Semivulture
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 33554432/33480783
Mapping: [⟨2 0 -12 50 41], ⟨0 4 21 -56 -43]]
- mapping generators: ~99/70, ~320/243
Optimal tuning (POTE): ~99/70 = 1\2, ~320/243 = 475.550
Optimal ET sequence: 106, 164, 270, 916, 1186, 1456
Badness: 0.040799
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 3025/3024, 4096/4095, 4375/4374
Mapping: [⟨2 0 -12 50 41 -14], ⟨0 4 21 -56 -43 27]]
Optimal tuning (POTE): ~99/70 = 1\2, ~320/243 = 475.553
Optimal ET sequence: 106, 164, 270
Badness: 0.035458
Buzzard
Buzzard is an alternative lower complexity extension to vulture, but more of a full 13-limit system in its own right. It can be described as 53 & 58. As one might expect, 111edo is a great tuning for it.
Subgroup: 2.3.5.7
Comma list: 1728/1715, 5120/5103
Mapping: [⟨1 0 -6 4], ⟨0 4 21 -3]]
Wedgie: ⟨⟨ 4 21 -3 24 -16 -66 ]]
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.636
Optimal ET sequence: 5, 43c, 48, 53, 111, 164d, 275d
Badness: 0.047963
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 540/539, 5120/5103
Mapping: [⟨1 0 -6 4 -12], ⟨0 4 21 -3 39]]
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.700
Optimal ET sequence: 53, 58, 111, 280cd, 391cd
Badness: 0.034484
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 351/350, 540/539, 676/675
Mapping: [⟨1 0 -6 4 -12 -7], ⟨0 4 21 -3 39 27]]
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.697
Optimal ET sequence: 53, 58, 111, 280cdf, 391cdf
Badness: 0.018842
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 176/175, 256/255, 351/350, 442/441, 540/539
Mapping: [⟨1 0 -6 4 -12 -7 14], ⟨0 4 21 -3 39 27 -25]]
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.692
Optimal ET sequence: 53, 58, 111, 321cdfg
Badness: 0.018403
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 176/175, 256/255, 286/285, 324/323, 351/350, 540/539
Mapping: [⟨1 0 -6 4 -12 -7 14 -12], ⟨0 4 21 -3 39 27 -25 41]]
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.679
Optimal ET sequence: 53, 58h, 111
Badness: 0.015649
Buteo
Subgroup: 2.3.5.7.11
Comma list: 99/98, 385/384, 2200/2187
Mapping: [⟨1 0 -6 4 9], ⟨0 4 21 -3 -14]]
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.436
Optimal ET sequence: 5, 48, 53
Badness: 0.060238
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 275/273, 385/384, 572/567
Mapping: [⟨1 0 -6 4 9 -7], ⟨0 4 21 -3 -14 27]]
Optimal tuning (POTE): ~2 = 1\1, ~21/16 = 475.464
Optimal ET sequence: 5, 48f, 53
Badness: 0.039854
Condor
Subgroup: 2.3.5.7
Comma list: 10976/10935, 40353607/40000000
Mapping: [⟨1 8 36 29], ⟨0 -12 -63 -49]]
Wedgie: ⟨⟨ 12 63 49 72 44 -63 ]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4791
Optimal ET sequence: 58, 159, 217
Badness: 0.154715
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4000/3993, 10976/10935
Mapping: [⟨1 8 36 29 35], ⟨0 -12 -63 -49 -59]]
Optimal tuning (POTE): ~2 = 1\1, 81/56 = 641.4822
Optimal ET sequence: 58, 101cd, 159, 217
Badness: 0.048401
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 676/675, 10976/10935
Mapping: [⟨1 8 36 29 35 47], ⟨0 -12 -63 -49 -59 -81]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4797
Optimal ET sequence: 58, 159, 217
Badness: 0.025469
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 676/675, 8624/8619
Mapping: [⟨1 8 36 29 35 47 -5], ⟨0 -12 -63 -49 -59 -81 17]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4794
Optimal ET sequence: 58, 159, 217
Badness: 0.021984
Eagle
Subgroup: 2.3.5.7
Comma list: 2401/2400, 10485760000/10460353203
Mapping: [⟨2 4 9 8], ⟨0 -8 -42 -23]]
- mapping generators: ~177147/125440, ~28/27
Wedgie: ⟨⟨ 16 84 46 96 28 -129 ]]
Optimal tuning (POTE): ~177147/125440 = 1\2, ~28/27 = 62.229
Optimal ET sequence: 58, 154c, 212, 270, 752, 1022, 1292, 2854b
Badness: 0.059498
11-limit
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 9801/9800, 19712/19683
Mapping: [⟨2 4 9 8 12], ⟨0 -8 -42 -23 -49]]
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.224
Optimal ET sequence: 58, 154ce, 212, 270
Badness: 0.024885
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 10648/10647
Mapping: [⟨2 4 9 8 12 13], ⟨0 -8 -42 -23 -49 -54]]
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.220
Optimal ET sequence: 58, 154cef, 212, 270
Badness: 0.016282
Turkey
Subgroup: 2.3.5.7
Comma list: 4802000/4782969, 5250987/5242880
Mapping: [⟨1 8 36 0], ⟨0 -16 -84 7]]
Wedgie: ⟨⟨ 16 84 -7 96 -56 -252 ]]
Optimal tuning (POTE): ~2 = 1\1, ~1715/1296 = 481.120
Optimal ET sequence: 5, 207c, 212, 429
Badness: 0.210964
11-limit
Subgroup: 2.3.5.7.11
Comma list: 19712/19683, 42875/42768, 160083/160000
Mapping: [⟨1 8 36 0 64], ⟨0 -16 -84 7 -151]]
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.120
Badness: 0.079694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 19712/19683, 31213/31104
Mapping: [⟨1 8 36 0 64 47], ⟨0 -16 -84 7 -151 -108]]
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.118
Optimal ET sequence: 212, 217, 429
Badness: 0.043787