Dicot family: Difference between revisions
CompactStar (talk | contribs) No edit summary |
Update keys |
||
Line 1: | Line 1: | ||
The [[5-limit]] parent [[comma]] for the dicot family is [[25/24]], the | The [[5-limit]] parent [[comma]] for the '''dicot family''' is [[25/24]], the classical chromatic semitone. Its [[monzo]] is {{monzo| -3 -1 2 }}, and flipping that yields {{multival| 2 1 -3 }} for the [[wedgie]]. This tells us the [[generator]] is a classical third (major and minor mean the same thing), and that two such thirds give a fifth. In fact, (5/4)<sup>2</sup> = (3/2)(25/24). | ||
Possible tunings for dicot are [[7edo]], [[17edo]], [[24edo]] using the val {{val| 24 38 55 }} (24c) and [[31edo]] using the val {{val| 31 49 71 }} (31c). In a sense, what dicot is all about is using neutral thirds and pretending that is 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an [[exotemperament]]. | |||
== Dicot == | == Dicot == | ||
Subgroup: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: 25/24 | [[Comma list]]: 25/24 | ||
{{Mapping|legend=1| 1 1 2 | 0 2 1 }} | |||
[[ | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 348.594 | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
* 5-odd-limit [[diamond monotone]]: ~5/4 = [300.000, 400.000] (1\4 to 1\3) | * 5-odd-limit [[diamond monotone]]: ~5/4 = [300.000, 400.000] (1\4 to 1\3) | ||
* 5-odd-limit [[diamond tradeoff]]: ~5/4 = [315.641, 386.314] | * 5-odd-limit [[diamond tradeoff]]: ~5/4 = [315.641, 386.314] (full comma to untempered) | ||
* 5-odd-limit diamond monotone and tradeoff: ~5/4 = [315.641, 386.314] | * 5-odd-limit diamond monotone and tradeoff: ~5/4 = [315.641, 386.314] | ||
Line 19: | Line 21: | ||
[[Badness]]: 0.013028 | [[Badness]]: 0.013028 | ||
=== | === Overview to extensions === | ||
The second comma of the [[ | The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie {{multival| 2 1 3 -3 -1 4 }} adds 36/35, sharp with wedgie {{multival| 2 1 6 -3 4 11 }} adds 28/27, and dichotic with wedgie {{multival| 2 1 -4 -3 -12 -12 }} adds 64/63, all retaining the same period and generator. | ||
Decimal with wedgie {{multival| 4 2 2 -6 -8 -1 }} adds 49/48, sidi with wedgie {{multival| 4 2 9 -3 6 15 }} adds 245/243, and jamesbond with wedgie {{multival| 0 0 7 0 11 16 }} adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. | |||
== Septimal dicot == | == Septimal dicot == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 15/14, 25/24 | [[Comma list]]: 15/14, 25/24 | ||
{{Mapping|legend=1| 1 1 2 2 | 0 2 1 3 }} | |||
{{Multival|legend=1| 2 1 3 -3 -1 4 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 336.381 | ||
{{Optimal ET sequence|legend=1| 3d, 4, 7, 18bc, 25bccd }} | {{Optimal ET sequence|legend=1| 3d, 4, 7, 18bc, 25bccd }} | ||
Line 42: | Line 46: | ||
Comma list: 15/14, 22/21, 25/24 | Comma list: 15/14, 22/21, 25/24 | ||
Mapping: | Mapping: {{mapping| 1 1 2 2 2 | 0 2 1 3 5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 342.125 | ||
{{Optimal ET sequence|legend=1| 3de, 4e, 7 }} | {{Optimal ET sequence|legend=1| 3de, 4e, 7 }} | ||
Line 55: | Line 59: | ||
Comma list: 15/14, 25/24, 33/32 | Comma list: 15/14, 25/24, 33/32 | ||
Mapping: | Mapping: {{mapping| 1 1 2 2 4 | 0 2 1 3 -2 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 336.051 | ||
{{Optimal ET sequence|legend=1| 3d, 4, 7, 18bc, 25bccd }} | {{Optimal ET sequence|legend=1| 3d, 4, 7, 18bc, 25bccd }} | ||
Line 68: | Line 72: | ||
Comma list: 15/14, 25/24, 33/32, 40/39 | Comma list: 15/14, 25/24, 33/32, 40/39 | ||
Mapping: | Mapping: {{mapping| 1 1 2 2 4 4 | 0 2 1 3 -2 -1 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 338.846 | ||
{{Optimal ET sequence|legend=1| 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef }} | {{Optimal ET sequence|legend=1| 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef }} | ||
Line 77: | Line 81: | ||
== Flat == | == Flat == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 21/20, 25/24 | [[Comma list]]: 21/20, 25/24 | ||
{{Mapping|legend=1| 1 1 2 3 | 0 2 1 -1 }} | |||
{{Multival|legend=1|2 1 -1 -3 -7 -5}} | {{Multival|legend=1|2 1 -1 -3 -7 -5}} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 331.916 | ||
{{Optimal ET sequence|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | {{Optimal ET sequence|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | ||
Line 96: | Line 100: | ||
Comma list: 21/20, 25/24, 33/32 | Comma list: 21/20, 25/24, 33/32 | ||
Mapping: | Mapping: {{mapping| 1 1 2 3 4 | 0 2 1 -1 -2 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 337.532 | ||
{{Optimal ET sequence|legend=1| 3, 4, 7d }} | {{Optimal ET sequence|legend=1| 3, 4, 7d }} | ||
Line 109: | Line 113: | ||
Comma list: 14/13, 21/20, 25/24, 33/32 | Comma list: 14/13, 21/20, 25/24, 33/32 | ||
Mapping: | Mapping: {{mapping| 1 1 2 3 4 4 | 0 2 1 -1 -2 -1 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 341.023 | ||
{{Optimal ET sequence|legend=1| 3, 4, 7d }} | {{Optimal ET sequence|legend=1| 3, 4, 7d }} | ||
Line 118: | Line 122: | ||
== Sharp == | == Sharp == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 25/24, 28/27 | [[Comma list]]: 25/24, 28/27 | ||
{{Mapping|legend=1| 1 1 2 1 | 0 2 1 6 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 357.938 | ||
{{Multival|legend=1|2 1 6 -3 4 11}} | {{Multival|legend=1| 2 1 6 -3 4 11 }} | ||
{{Optimal ET sequence|legend=1| 3d, 7d, 10, 37cd, 47bccd, 57bccdd }} | {{Optimal ET sequence|legend=1| 3d, 7d, 10, 37cd, 47bccd, 57bccdd }} | ||
Line 137: | Line 141: | ||
Comma list: 25/24, 28/27, 35/33 | Comma list: 25/24, 28/27, 35/33 | ||
Mapping: | Mapping: {{mapping| 1 1 2 1 2 | 0 2 1 6 5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 356.106 | ||
{{Optimal ET sequence|legend=1| 3de, 7d, 10, 17d, 27cde }} | {{Optimal ET sequence|legend=1| 3de, 7d, 10, 17d, 27cde }} | ||
Line 146: | Line 150: | ||
== Decimal == | == Decimal == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 25/24, 49/48 | [[Comma list]]: 25/24, 49/48 | ||
{{Mapping|legend=1| 2 0 3 4 | 0 2 1 1 }} | |||
{{Multival|legend=1|4 2 2 -6 -8 -1}} | {{Multival|legend=1| 4 2 2 -6 -8 -1 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~7/6 = 251.557 | ||
{{Optimal ET sequence|legend=1| 4, 10, 14c, 24c, 38ccd, 62cccdd }} | {{Optimal ET sequence|legend=1| 4, 10, 14c, 24c, 38ccd, 62cccdd }} | ||
Line 165: | Line 169: | ||
Comma list: 25/24, 45/44, 49/48 | Comma list: 25/24, 45/44, 49/48 | ||
Mapping: | Mapping: {{mapping| 2 0 3 4 -1 | 0 2 1 1 5 }} | ||
POTE | Optimal tuning (POTE): ~7/5 = 1\2, ~7/6 = 253.493 | ||
{{Optimal ET sequence|legend=1| 10, 14c, 24c, 38ccd, 52cccde }} | {{Optimal ET sequence|legend=1| 10, 14c, 24c, 38ccd, 52cccde }} | ||
Line 178: | Line 182: | ||
Comma list: 25/24, 33/32, 49/48 | Comma list: 25/24, 33/32, 49/48 | ||
Mapping: | Mapping: {{mapping| 2 0 3 4 10 | 0 2 1 1 -2 }} | ||
POTE | Optimal tuning (POTE): ~7/5 = 1\2, ~7/6 = 255.066 | ||
{{Optimal ET sequence|legend=1| 4, 10e, 14c }} | {{Optimal ET sequence|legend=1| 4, 10e, 14c }} | ||
Line 191: | Line 195: | ||
Comma list: 25/24, 35/33, 49/48 | Comma list: 25/24, 35/33, 49/48 | ||
Mapping: | Mapping: {{mapping| 2 0 3 4 7 | 0 2 1 1 0 }} | ||
POTE | Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 243.493 | ||
{{Optimal ET sequence|legend=1| 4, 6, 10 }} | {{Optimal ET sequence|legend=1| 4, 6, 10 }} | ||
Line 200: | Line 204: | ||
== Dichotic == | == Dichotic == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 25/24, 64/63 | [[Comma list]]: 25/24, 64/63 | ||
{{Mapping|legend=1| 1 1 2 4 | 0 2 1 -4 }} | |||
{{Multival|legend=1|2 1 -4 -3 -12 -12}} | {{Multival|legend=1| 2 1 -4 -3 -12 -12 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 356.264 | ||
{{Optimal ET sequence|legend=1| 3, 7, 10, 17, 27c, 37c, 64bccc }} | {{Optimal ET sequence|legend=1| 3, 7, 10, 17, 27c, 37c, 64bccc }} | ||
Line 219: | Line 223: | ||
Comma list: 25/24, 45/44, 64/63 | Comma list: 25/24, 45/44, 64/63 | ||
Mapping: | Mapping: {{mapping| 1 1 2 4 2 | 0 2 1 -4 5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.262 | ||
{{Optimal ET sequence|legend=1| 7, 10, 17, 27ce, 44cce }} | {{Optimal ET sequence|legend=1| 7, 10, 17, 27ce, 44cce }} | ||
Line 232: | Line 236: | ||
Comma list: 25/24, 40/39, 45/44, 64/63 | Comma list: 25/24, 40/39, 45/44, 64/63 | ||
Mapping: | Mapping: {{mapping| 1 1 2 4 2 4 | 0 2 1 -4 5 -1 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.365 | ||
{{Optimal ET sequence|legend=1| 7, 10, 17, 27ce, 44cce }} | {{Optimal ET sequence|legend=1| 7, 10, 17, 27ce, 44cce }} | ||
Line 245: | Line 249: | ||
Comma list: 22/21, 25/24, 33/32 | Comma list: 22/21, 25/24, 33/32 | ||
Mapping: | Mapping: {{mapping| 1 1 2 4 4 | 0 2 1 -4 -2 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.073 | ||
{{Optimal ET sequence|legend=1| 3, 7, 10e, 17e }} | {{Optimal ET sequence|legend=1| 3, 7, 10e, 17e }} | ||
Line 258: | Line 262: | ||
Comma list: 22/21, 25/24, 33/32, 40/39 | Comma list: 22/21, 25/24, 33/32, 40/39 | ||
Mapping: | Mapping: {{mapping| 1 1 2 4 4 4 | 0 2 1 -4 -2 -1 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.313 | ||
{{Optimal ET sequence|legend=1| 3, 7, 10e, 17e }} | {{Optimal ET sequence|legend=1| 3, 7, 10e, 17e }} | ||
Line 271: | Line 275: | ||
Comma list: 25/24, 35/33, 64/63 | Comma list: 25/24, 35/33, 64/63 | ||
Mapping: | Mapping: {{mapping| 1 1 2 4 5 | 0 2 1 -4 -5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 360.659 | ||
{{Optimal ET sequence|legend=1| 3, 7e, 10 }} | {{Optimal ET sequence|legend=1| 3, 7e, 10 }} | ||
Line 284: | Line 288: | ||
Comma list: 25/24, 35/33, 40/39, 64/63 | Comma list: 25/24, 35/33, 40/39, 64/63 | ||
Mapping: | Mapping: {{mapping| 1 1 2 4 5 4 | 0 2 1 -4 -5 -1 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 360.646 | ||
{{Optimal ET sequence|legend=1| 3, 7e, 10 }} | {{Optimal ET sequence|legend=1| 3, 7e, 10 }} | ||
Line 293: | Line 297: | ||
== Jamesbond == | == Jamesbond == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 25/24, 81/80 | [[Comma list]]: 25/24, 81/80 | ||
{{Mapping|legend=1| 7 11 16 0 | 0 0 0 1 }} | |||
{{Multival|legend=1|0 0 7 0 11 16}} | {{Multival|legend=1| 0 0 7 0 11 16 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~10/9 = 1\7, ~8/7 = 258.139 | ||
{{Optimal ET sequence|legend=1| 7, 14c }} | {{Optimal ET sequence|legend=1| 7, 14c }} | ||
Line 312: | Line 316: | ||
Comma list: 25/24, 33/32, 45/44 | Comma list: 25/24, 33/32, 45/44 | ||
Mapping: | Mapping: {{mapping| 7 11 16 0 24 | 0 0 0 1 0 }} | ||
POTE | Optimal tuning (POTE): ~10/9 = 1\7, ~8/7 = 258.910 | ||
{{Optimal ET sequence|legend=1| 7, 14c }} | {{Optimal ET sequence|legend=1| 7, 14c }} | ||
Line 325: | Line 329: | ||
Comma list: 25/24, 27/26, 33/32, 40/39 | Comma list: 25/24, 27/26, 33/32, 40/39 | ||
Mapping: | Mapping: {{mapping| 7 11 16 0 24 26 | 0 0 0 1 0 0 }} | ||
POTE | Optimal tuning (POTE): ~10/9 = 1\7, ~8/7 = 250.764 | ||
{{Optimal ET sequence|legend=1| 7, 14c }} | {{Optimal ET sequence|legend=1| 7, 14c }} | ||
Line 338: | Line 342: | ||
Comma list: 25/24, 33/32, 45/44, 65/63 | Comma list: 25/24, 33/32, 45/44, 65/63 | ||
Mapping: | Mapping: {{mapping| 7 11 16 0 24 6 | 0 0 0 1 0 1 }} | ||
POTE | Optimal tuning (POTE): ~10/9 = 1\7, ~8/7 = 247.445 | ||
{{Optimal ET sequence|legend=1| 7, 14cf }} | {{Optimal ET sequence|legend=1| 7, 14cf }} | ||
Line 347: | Line 351: | ||
== Sidi == | == Sidi == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 25/24, 245/243 | [[Comma list]]: 25/24, 245/243 | ||
{{Mapping|legend=1| 1 3 3 6 | 0 -4 -2 -9 }} | |||
{{Multival|legend=1|4 2 9 -12 3 15}} | {{Multival|legend=1| 4 2 9 -12 3 15 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 427.208 | ||
{{Optimal ET sequence|legend=1| 3d, 14c, 45cc, 59bcccd }} | {{Optimal ET sequence|legend=1| 3d, 14c, 45cc, 59bcccd }} | ||
Line 366: | Line 370: | ||
Comma list: 25/24, 45/44, 99/98 | Comma list: 25/24, 45/44, 99/98 | ||
Mapping: | Mapping: {{mapping| 1 3 3 6 7 | 0 -4 -2 -9 -10 }} | ||
POTE generator: ~9/7 = 427.273 | POTE generator: ~9/7 = 427.273 | ||
Line 375: | Line 379: | ||
== Quad == | == Quad == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 9/8, 25/24 | [[Comma list]]: 9/8, 25/24 | ||
{{Mapping|legend=1| 4 6 9 0 | 0 0 0 1 }} | |||
{{Multival|legend=1|0 0 4 0 6 9}} | {{Multival|legend=1|0 0 4 0 6 9}} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~6/5 = 1\4, ~8/7 = 324.482 | ||
{{Optimal ET sequence|legend=1| 4 }} | {{Optimal ET sequence|legend=1| 4 }} | ||
Line 391: | Line 395: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Dicot family| ]] <!-- main article --> | [[Category:Dicot family| ]] <!-- main article --> | ||
[[Category:Dicot]] | [[Category:Dicot| ]] <!-- key article --> | ||
[[Category:Rank-2]] |
Revision as of 13:08, 6 August 2023
The 5-limit parent comma for the dicot family is 25/24, the classical chromatic semitone. Its monzo is [-3 -1 2⟩, and flipping that yields ⟨⟨ 2 1 -3 ]] for the wedgie. This tells us the generator is a classical third (major and minor mean the same thing), and that two such thirds give a fifth. In fact, (5/4)2 = (3/2)(25/24).
Possible tunings for dicot are 7edo, 17edo, 24edo using the val ⟨24 38 55] (24c) and 31edo using the val ⟨31 49 71] (31c). In a sense, what dicot is all about is using neutral thirds and pretending that is 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an exotemperament.
Dicot
Subgroup: 2.3.5
Comma list: 25/24
Mapping: [⟨1 1 2], ⟨0 2 1]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 348.594
- 5-odd-limit diamond monotone: ~5/4 = [300.000, 400.000] (1\4 to 1\3)
- 5-odd-limit diamond tradeoff: ~5/4 = [315.641, 386.314] (full comma to untempered)
- 5-odd-limit diamond monotone and tradeoff: ~5/4 = [315.641, 386.314]
Optimal ET sequence: 3, 4, 7, 17, 24c, 31c
Badness: 0.013028
Overview to extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot, with wedgie ⟨⟨ 2 1 3 -3 -1 4 ]] adds 36/35, sharp with wedgie ⟨⟨ 2 1 6 -3 4 11 ]] adds 28/27, and dichotic with wedgie ⟨⟨ 2 1 -4 -3 -12 -12 ]] adds 64/63, all retaining the same period and generator.
Decimal with wedgie ⟨⟨ 4 2 2 -6 -8 -1 ]] adds 49/48, sidi with wedgie ⟨⟨ 4 2 9 -3 6 15 ]] adds 245/243, and jamesbond with wedgie ⟨⟨ 0 0 7 0 11 16 ]] adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
Septimal dicot
Subgroup: 2.3.5.7
Comma list: 15/14, 25/24
Mapping: [⟨1 1 2 2], ⟨0 2 1 3]]
Wedgie: ⟨⟨ 2 1 3 -3 -1 4 ]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 336.381
Optimal ET sequence: 3d, 4, 7, 18bc, 25bccd
Badness: 0.019935
11-limit
Subgroup: 2.3.5.7.11
Comma list: 15/14, 22/21, 25/24
Mapping: [⟨1 1 2 2 2], ⟨0 2 1 3 5]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 342.125
Optimal ET sequence: 3de, 4e, 7
Badness: 0.019854
Eudicot
Subgroup: 2.3.5.7.11
Comma list: 15/14, 25/24, 33/32
Mapping: [⟨1 1 2 2 4], ⟨0 2 1 3 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 336.051
Optimal ET sequence: 3d, 4, 7, 18bc, 25bccd
Badness: 0.027114
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 15/14, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 2 4 4], ⟨0 2 1 3 -2 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 338.846
Optimal ET sequence: 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef
Badness: 0.023828
Flat
Subgroup: 2.3.5.7
Comma list: 21/20, 25/24
Mapping: [⟨1 1 2 3], ⟨0 2 1 -1]]
Wedgie: ⟨⟨ 2 1 -1 -3 -7 -5 ]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 331.916
Optimal ET sequence: 3, 4, 7d, 11cd, 18bcddd
Badness: 0.025381
11-limit
Subgroup: 2.3.5.7.11
Comma list: 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4], ⟨0 2 1 -1 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 337.532
Optimal ET sequence: 3, 4, 7d
Badness: 0.024988
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 14/13, 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4 4], ⟨0 2 1 -1 -2 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 341.023
Optimal ET sequence: 3, 4, 7d
Badness: 0.023420
Sharp
Subgroup: 2.3.5.7
Comma list: 25/24, 28/27
Mapping: [⟨1 1 2 1], ⟨0 2 1 6]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 357.938
Wedgie: ⟨⟨ 2 1 6 -3 4 11 ]]
Optimal ET sequence: 3d, 7d, 10, 37cd, 47bccd, 57bccdd
Badness: 0.028942
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 28/27, 35/33
Mapping: [⟨1 1 2 1 2], ⟨0 2 1 6 5]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 356.106
Optimal ET sequence: 3de, 7d, 10, 17d, 27cde
Badness: 0.022366
Decimal
Subgroup: 2.3.5.7
Comma list: 25/24, 49/48
Mapping: [⟨2 0 3 4], ⟨0 2 1 1]]
Wedgie: ⟨⟨ 4 2 2 -6 -8 -1 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~7/6 = 251.557
Optimal ET sequence: 4, 10, 14c, 24c, 38ccd, 62cccdd
Badness: 0.028334
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 49/48
Mapping: [⟨2 0 3 4 -1], ⟨0 2 1 1 5]]
Optimal tuning (POTE): ~7/5 = 1\2, ~7/6 = 253.493
Optimal ET sequence: 10, 14c, 24c, 38ccd, 52cccde
Badness: 0.026712
Decimated
Subgroup: 2.3.5.7.11
Comma list: 25/24, 33/32, 49/48
Mapping: [⟨2 0 3 4 10], ⟨0 2 1 1 -2]]
Optimal tuning (POTE): ~7/5 = 1\2, ~7/6 = 255.066
Optimal ET sequence: 4, 10e, 14c
Badness: 0.031456
Decibel
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 49/48
Mapping: [⟨2 0 3 4 7], ⟨0 2 1 1 0]]
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 243.493
Optimal ET sequence: 4, 6, 10
Badness: 0.032385
Dichotic
Subgroup: 2.3.5.7
Comma list: 25/24, 64/63
Mapping: [⟨1 1 2 4], ⟨0 2 1 -4]]
Wedgie: ⟨⟨ 2 1 -4 -3 -12 -12 ]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 356.264
Optimal ET sequence: 3, 7, 10, 17, 27c, 37c, 64bccc
Badness: 0.037565
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 64/63
Mapping: [⟨1 1 2 4 2], ⟨0 2 1 -4 5]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.262
Optimal ET sequence: 7, 10, 17, 27ce, 44cce
Badness: 0.030680
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 40/39, 45/44, 64/63
Mapping: [⟨1 1 2 4 2 4], ⟨0 2 1 -4 5 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.365
Optimal ET sequence: 7, 10, 17, 27ce, 44cce
Badness: 0.021674
Dichotomic
Subgroup: 2.3.5.7.11
Comma list: 22/21, 25/24, 33/32
Mapping: [⟨1 1 2 4 4], ⟨0 2 1 -4 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.073
Optimal ET sequence: 3, 7, 10e, 17e
Badness: 0.031719
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 22/21, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 4 4 4], ⟨0 2 1 -4 -2 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 354.313
Optimal ET sequence: 3, 7, 10e, 17e
Badness: 0.022741
Dichosis
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 64/63
Mapping: [⟨1 1 2 4 5], ⟨0 2 1 -4 -5]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 360.659
Optimal ET sequence: 3, 7e, 10
Badness: 0.041361
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 35/33, 40/39, 64/63
Mapping: [⟨1 1 2 4 5 4], ⟨0 2 1 -4 -5 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 360.646
Optimal ET sequence: 3, 7e, 10
Badness: 0.027938
Jamesbond
Subgroup: 2.3.5.7
Comma list: 25/24, 81/80
Mapping: [⟨7 11 16 0], ⟨0 0 0 1]]
Wedgie: ⟨⟨ 0 0 7 0 11 16 ]]
Optimal tuning (POTE): ~10/9 = 1\7, ~8/7 = 258.139
Badness: 0.041714
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 33/32, 45/44
Mapping: [⟨7 11 16 0 24], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~10/9 = 1\7, ~8/7 = 258.910
Badness: 0.023524
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 27/26, 33/32, 40/39
Mapping: [⟨7 11 16 0 24 26], ⟨0 0 0 1 0 0]]
Optimal tuning (POTE): ~10/9 = 1\7, ~8/7 = 250.764
Badness: 0.023003
Septimal
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 33/32, 45/44, 65/63
Mapping: [⟨7 11 16 0 24 6], ⟨0 0 0 1 0 1]]
Optimal tuning (POTE): ~10/9 = 1\7, ~8/7 = 247.445
Badness: 0.022569
Sidi
Subgroup: 2.3.5.7
Comma list: 25/24, 245/243
Mapping: [⟨1 3 3 6], ⟨0 -4 -2 -9]]
Wedgie: ⟨⟨ 4 2 9 -12 3 15 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 427.208
Optimal ET sequence: 3d, 14c, 45cc, 59bcccd
Badness: 0.056586
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 99/98
Mapping: [⟨1 3 3 6 7], ⟨0 -4 -2 -9 -10]]
POTE generator: ~9/7 = 427.273
Optimal ET sequence: 3de, 14c, 45cce, 59bcccdee
Badness: 0.032957
Quad
Subgroup: 2.3.5.7
Comma list: 9/8, 25/24
Mapping: [⟨4 6 9 0], ⟨0 0 0 1]]
Wedgie: ⟨⟨ 0 0 4 0 6 9 ]]
Optimal tuning (POTE): ~6/5 = 1\4, ~8/7 = 324.482
Badness: 0.045911