212edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Revert the theory text to an earlier state since the ratio (name) isn't really easier to read
Improve intro
Line 1: Line 1:
'''212 equal temperament''' divides the octave into 212 equal parts of 5.660 cents each.  
The '''212 equal divisions of the octave''' ('''212edo'''), or the '''212(-tone) equal temperament''' ('''212tet''', '''212et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 212 [[equal]] parts of 5.660 [[cent]]s each.  


== Theory ==
== Theory ==

Revision as of 09:58, 25 July 2021

The 212 equal divisions of the octave (212edo), or the 212(-tone) equal temperament (212tet, 212et) when viewed from a regular temperament perspective, divides the octave into 212 equal parts of 5.660 cents each.

Theory

212 = 4 × 53, and it shares the 3rd, 5th, and 13th harmonics with 53edo, but the mapping differs for 7 and 11.

It tempers out the same commas (15625/15552, 32805/32768, 1600000/1594323, etc.) as 53edo in the 5-limit. In the 7-limit, it tempers out 2401/2400 (breedsma), 390625/388962 (dimcomp comma), and 4802000/4782969 (canousma). In the 11-limit, 385/384, 1375/1372, 6250/6237, 9801/9800 and 14641/14580; in the 13-limit, 325/324, 625/624, 676/675, 1001/1000, 1716/1715, and 2080/2079.

It is distinctly consistent in the 15-odd-limit with harmonics of 3 through 13 all tuned flat. It is the optimal patent val for 7- and 13-limit quadritikleismic temperament, the 7-limit rank-3 kleismic temperament, and the 13-limit rank-3 agni temperament. 212gh val shows some potential beyond 15-odd-limit. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone.

Prime intervals

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 15625/15552, 32805/32768 [212 336 492 595]] +0.243 0.244 4.30
2.3.5.7.11 385/384, 1375/1372, 6250/6237, 14641/14580 [212 336 492 595 733]] +0.325 0.273 4.82
2.3.5.7.11.13 325/324, 385/384, 625/624, 1375/1372, 10648/10647 [212 336 492 595 733 784]] +0.396 0.296 5.23
2.3.5.7.11.13.17 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647 [212 336 492 595 733 784 866]] (212g) +0.447 0.301 5.32
2.3.5.7.11.13.17.19 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624 [212 336 492 595 733 784 866 900]] (212gh) +0.485 0.299 5.27