Hemimage temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>FREEZE
No edit summary
 
(67 intermediate revisions by 10 users not shown)
Line 1: Line 1:
__FORCETOC__
{{Technical data page}}
Hemimage temperaments temper out the hemimage comma, |5 -7 -1 3> = 10976/10935.
This is a collection of [[rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[hemimage comma]] ({{monzo|legend=1| 5 -7 -1 3 }}, [[ratio]]: 10976/10935). These include chromat, degrees, bicommatic, bisupermajor, and squarschmidt, considered below, as well as the following discussed elsewhere:
* ''[[Quasisuper]]'' (+64/63) → [[Archytas clan #Quasisuper|Archytas clan]]
* ''[[Liese]]'' (+81/80) → [[Meantone family #Liese|Meantone family]]
* ''[[Unicorn]]'' (+126/125) → [[Unicorn family #Septimal unicorn|Unicorn family]]
* [[Magic]] (+225/224 or 245/243) → [[Magic family #Magic|Magic family]]
* ''[[Guiron]]'' (+1029/1024) → [[Gamelismic clan #Guiron|Gamelismic clan]]
* ''[[Echidna]]'' (+1728/1715 or 2048/2025) → [[Diaschismic family #Echidna|Diaschismic family]]
* [[Hemififths]] (+2401/2400 or 5120/5103) → [[Breedsmic temperaments #Hemififths|Breedsmic temperaments]]
* ''[[Dodecacot]]'' (+3125/3087) → [[Tetracot family #Dodecacot|Tetracot family]]
* [[Parakleismic]] (+3136/3125 or 4375/4374) → [[Ragismic microtemperaments #Parakleismic|Ragismic microtemperaments]]
* ''[[Pluto]]'' (+4000/3969) → [[Mirkwai clan #Pluto|Mirkwai clan]]
* ''[[Hendecatonic]]'' (+6144/6125) → [[Porwell temperaments #Hendecatonic|Porwell temperaments]]
* ''[[Marfifths]]'' (+15625/15552) → [[Kleismic family #Marfifths|Kleismic family]]
* ''[[Subfourth]]'' (+65536/64827) → [[Buzzardsmic clan #Subfourth|Buzzardsmic clan]]
* ''[[Cotoneum]]'' (+33554432/33480783) → [[Garischismic clan #Cotoneum|Garischismic clan]]
* ''[[Yarman I]]'' (+244140625/243045684) → [[Quartonic family]]


=Commatic=
== Chromat ==
The chromat temperament has a period of 1/3 octave and tempers out the hemimage (10976/10935) and the triwellisma (235298/234375). It is also described as an [[Amity family|amity extension]] with third-octave period.


==7-limit==
[[Subgroup]]: 2.3.5.7
Commas: 10976/10935, 50421/50000


POTE generator: ~81/80 = 20.377
[[Comma list]]: 10976/10935, 235298/234375


Map: [<2 3 4 5|, <0 5 19 18|]
{{Mapping|legend=1| 3 4 5 6 | 0 5 13 16 }}


Wedgie: <<10 38 36 37 29 -23||
: mapping generators: ~63/50, ~28/27


EDOs: 58, 118, 294, 412d, 530d
[[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~28/27 = 60.528


Badness: 0.0843
{{Optimal ET sequence|legend=1| 39d, 60, 99, 258, 357, 456 }}


==11-limit==
[[Badness]]: 0.057499
Commas: 441/440, 3388/3375, 8019/8000


POTE generator: ~81/80 = 20.390
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [<2 3 4 5 6|, <0 5 19 18 27|]
Comma list: 441/440, 4375/4356, 10976/10935


EDOs: 58, 118, 294, 412d
Mapping: {{mapping| 3 4 5 6 6 | 0 5 13 16 29 }}


Badness: 0.0305
Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.430


=Chromat=
{{Optimal ET sequence|legend=1| 60e, 99e, 159, 258, 417d }}
Commas: 10976/10935, 235298/234375


POTE generator: ~28/27 = 60.528
Badness: 0.050379


Map: [<3 4 5 6|, <0 5 13 16|]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Wedgie: <<15 39 48 27 34 2||
Comma list: 364/363, 441/440, 625/624, 10976/10935


EDOs: 60, 99, 258, 357, 456
Mapping: {{mapping| 3 4 5 6 6 4 | 0 5 13 16 29 47 }}


Badness: 0.0575
Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.428


=Degrees=
{{Optimal ET sequence|legend=1| 99ef, 159, 258, 417d }}
Commas: 10976/10935, 390625/388962


POTE generator: ~3/2 = 703.015
Badness: 0.046006


Map: [<20 0 -17 -39|, <0 1 2 3|]
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


Wedgie: <<20 40 60 17 39 27||
Comma list: 364/363, 375/374, 441/440, 595/594, 3773/3757


EDOs: 60, 80, 140, 640b, 780b, 920b
Mapping: {{mapping| 3 4 5 6 6 4 10 | 0 5 13 16 29 47 15 }}


Badness: 0.1065
Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.438


==11-limit==
{{Optimal ET sequence|legend=1| 99ef, 159, 258, 417dg }}
Commas: 1331/1323, 1375/1372, 2200/2187


POTE generator: ~3/2 = 703.231
Badness: 0.031678


Map: [<20 0 -17 -39 -26|, <0 1 2 3 3|]
==== Catachrome ====
Subgroup: 2.3.5.7.11.13


EDOs: 80, 140, 360, 500be, 860bde
Comma list: 325/324, 441/440, 1001/1000, 10976/10935


Badness: 0.0468
Mapping: {{mapping| 3 4 5 6 6 12 | 0 5 13 16 29 -6 }}


==13-limit==
Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.378
Commas: 325/324, 352/351, 1001/1000, 1331/1323


POTE generator: ~3/2 = 703.080
{{Optimal ET sequence|legend=1| 60e, 99e, 159 }}


Map: [<20 0 -17 -39 -26 74|, <0 1 2 3 3 0|]
Badness: 0.043844


EDOs: 60e, 80, 140, 500be, 640be, 780be
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


Badness: 0.0327
Comma list: 273/272, 325/324, 375/374, 441/440, 4928/4913


=Subfourth=
Mapping: {{mapping| 3 4 5 6 6 12 10 | 0 5 13 16 29 -6 15 }}
Commas: 10976/10935, 65536/64827


POTE generator: ~21/16 = 475.991
Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.377


Map: [<1 0 17 4|, <0 4 -37 -3|]
{{Optimal ET sequence|legend=1| 60e, 99e, 159 }}


EDOs: 58, 121, 179, 300bd, 479bcd
Badness: 0.030218


Badness: 0.1407
==== Chromic ====
Subgroup: 2.3.5.7.11.13


==11-limit==
Comma list: 196/195, 352/351, 729/728, 1875/1859
Commas: 540/539, 896/891, 12005/11979


POTE generator: ~21/16 = 475.995
Mapping: {{mapping| 3 4 5 6 6 9 | 0 5 13 16 29 14 }}


Map: [<1 0 17 4 11|, <0 4 -37 -3 -19|]
Optimal tuning (POTE): ~44/35 = 1\3, ~27/26 = 60.456


EDOs: 58, 121, 179e, 300bde
{{Optimal ET sequence|legend=1| 60e, 99ef, 159f, 258ff }}


Badness: 0.0453
Badness: 0.049857


==13-limit==
===== 17-limit =====
Commas: 352/351, 364/363, 540/539, 676/675
Subgroup: 2.3.5.7.11.13.17


POTE generator: ~21/16 = 475.996
Comma list: 170/169, 196/195, 352/351, 375/374, 595/594


Map: [<1 0 17 4 11 16|, <0 4 -37 -3 -19 -31|]
Mapping: {{mapping| 3 4 5 6 6 9 10 | 0 5 13 16 29 14 15 }}


EDOs: 58, 121, 179ef, 300bdef
Optimal tuning (POTE): ~63/50 = 1\3, ~27/26 = 60.459


Badness: 0.0238
{{Optimal ET sequence|legend=1| 60e, 99ef, 159f, 258ff }}
 
Badness: 0.031043
 
=== Hemichromat ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 10976/10935, 102487/102400
 
Mapping: {{mapping| 3 4 5 6 10 | 0 10 26 32 5 }}
 
Optimal tuning (CTE): ~63/50 = 1\3, ~55/54 = 30.2511
 
{{Optimal ET sequence|legend=1| 39d, 120cd, 159, 198, 357, 912b }}
 
Badness: 0.067173
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 676/675, 1001/1000, 3025/3024, 10976/10935
 
Mapping: {{mapping| 3 4 5 6 10 8 | 0 10 26 32 5 41 }}
 
Optimal tuning (CTE): ~63/50 = 1\3, ~55/54 = 30.2527
 
{{Optimal ET sequence|legend=1| 39df, 120cdff, 159, 198, 357, 912b }}
 
Badness: 0.033420
 
== Bisupermajor ==
{{See also| Very high accuracy temperaments #Kwazy }}
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 10976/10935, 65625/65536
 
{{Mapping|legend=1| 2 1 6 1 | 0 8 -5 17 }}
 
: mapping generators: ~1225/864, ~192/175
 
[[Optimal tuning]] ([[POTE]]): ~1225/864 = 1\2, ~192/175 = 162.806
 
{{Optimal ET sequence|legend=1| 22, 74d, 96d, 118, 140, 258, 398, 656d }}
 
[[Badness]]: 0.065492
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 385/384, 3388/3375, 9801/9800
 
Mapping: {{mapping| 2 1 6 1 8 | 0 8 -5 17 -4 }}
 
Optimal tuning (POTE): ~99/70, ~11/10 = 162.773
 
{{Optimal ET sequence|legend=1| 22, 74d, 96d, 118, 258e, 376de }}
 
Badness: 0.032080
 
== Bicommatic ==
Used to be known simply as the ''commatic'' temperament, the bicommatic temperament has a period of half octave and a generator of 20.4 cents, a small interval ("commatic") which represents 81/80, 99/98, and 100/99 all tempered together.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 10976/10935, 50421/50000
 
{{Mapping|legend=1| 2 3 4 5 | 0 5 19 18 }}
 
: mapping generators: ~567/400, ~81/80
 
[[Optimal tuning]] ([[POTE]]): ~567/400 = 1\2, ~81/80 = 20.377
 
{{Optimal ET sequence|legend=1| 58, 118, 294, 412d, 530d }}
 
[[Badness]]: 0.084317
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 3388/3375, 8019/8000
 
Mapping: {{mapping| 2 3 4 5 6 | 0 5 19 18 27 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~81/80 = 20.390
 
{{Optimal ET sequence|legend=1| 58, 118, 294, 412d }}
 
Badness: 0.030461
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 196/195, 352/351, 729/728, 1001/1000
 
Mapping: {{mapping| 2 3 4 5 6 7 | 0 5 19 18 27 12 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~66/65 = 20.427
 
{{Optimal ET sequence|legend=1| 58, 118, 176f }}
 
Badness: 0.026336
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 170/169, 196/195, 289/288, 352/351, 561/560
 
Mapping: {{mapping| 2 3 4 5 6 7 8 | 0 5 19 18 27 12 5 }}
 
Optimal tuning (POTE): ~17/12 = 1\2, ~66/65 = 20.378
 
{{Optimal ET sequence|legend=1| 58, 118, 294ffg, 412dffgg }}
 
Badness: 0.022396
 
== Degrees ==
{{ See also | 20th-octave temperaments }}
Degrees temperament has a period of 1/20 octave and tempers out the hemimage (10976/10935) and the dimcomp (390625/388962). In this temperament, one period equals ~28/27, two equals ~15/14, three equals ~10/9, five equals ~25/21, six equals ~16/13, seven equals ~14/11, nine equals ~15/11, and ten equals ~99/70.
 
An obvious extension to the 23-limit exists by equating 4\20 = 1\5 with [[23/20]], 6\20 = 3\10 with [[69/56]], 7\20 with [[23/18]], etc. By observing that 1\20 works as [[30/29]]~[[29/28]]~[[28/27]], with 29/28 being especially accurate, and by equating [[29/22]] with 2\5 = 240{{cent}}, we get a uniquely elegant extension to the 29-limit which tempers out ([[33/25]])/([[29/22]]) = [[726/725]], [[784/783|S28 = 784/783]] and [[841/840|S29 = 841/840]]. An edo as large as [[220edo|220]] supports it by patent val, though it does not appear in the optimal ET sequence, and [[80edo]] and [[140edo]] are both much more recommendable tunings.
 
By equating 37/28 with 2\5 and more accurately 85/74 with 1\5 and 44/37 with 1\4 (among many other equivalences) we get an extension to prime 37 agreeing with many (semi)convergents. By equating 60/41~41/28 with 11\20 or equivalently 56/41~41/30 with 9\20 and by equating 44/41 with 1\10 (among many other equivalences) there is a very efficient extension to prime 41.
 
By looking at the mapping, we observe an 80-note [[mos scale]] is ideal, so that [[80edo]] is in some sense both a trivial and maximally efficient tuning of this temperament. We also observe an abundance of JI interpretations of [[20edo]] by combining primes so that all things require 3 generators, yielding: 37:44:54:56:58:60:69:74:82:85. Alternatively, combining primes so that all things require 2 generators yields 36:40:46:51 which except for intervals of 51 is contained implicitly in the above. The ratios therein should thus be instructive for how the structure of 20edo relates to its representation of JI in this temperament. Note that prime 47 can be added but only really makes sense in rooted form in [[140edo]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 10976/10935, 390625/388962
 
{{Mapping|legend=1| 20 0 -17 -39 | 0 1 2 3 }}
 
: mapping generators: ~28/27, ~3
 
[[Optimal tuning]] ([[POTE]]): ~28/27 = 1\20, ~3/2 = 703.015 (~126/125 = 16.985)
 
{{Optimal ET sequence|legend=1| 20cd, 60, 80, 140, 640b, 780b }}
 
[[Badness]]: 0.106471
 
Badness (Sintel): 2.694
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 1331/1323, 1375/1372, 2200/2187
 
Mapping: {{mapping| 20 0 -17 -39 -26 | 0 1 2 3 3 }}
 
Optimal tuning (POTE): ~28/27 = 1\20, ~3/2 = 703.231 (~100/99 = 16.769)
 
{{Optimal ET sequence|legend=1| 20cd, 60e, 80, 140, 360 }}
 
Badness: 0.046770
 
Badness (Sintel): 1.546
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 325/324, 352/351, 1001/1000, 1331/1323
 
Mapping: {{mapping| 20 0 -17 -39 -26 74 | 0 1 2 3 3 0 }}
 
Optimal tuning (POTE): ~28/27 = 1\20, ~3/2 = 703.080 (~100/99 = 16.920)
 
{{Optimal ET sequence|legend=1| 20cde, 60e, 80, 140 }}
 
Badness: 0.032718
 
Badness (Sintel): 1.352
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 289/288, 325/324, 352/351, 561/560, 1001/1000
 
Mapping: {{mapping| 20 0 -17 -39 -26 74 50 | 0 1 2 3 3 0 1 }}
 
Optimal tuning (CTE): ~28/27 = 1\20, ~3/2 = 703.107 (~100/99 = 16.893)
 
{{Optimal ET sequence|legend=1| 20cde, 60e, 80, 140 }}
 
Badness (Sintel): 1.171
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 286/285, 289/288, 325/324, 352/351, 400/399, 476/475
 
Mapping: {{mapping| 20 0 -17 -39 -26 74 50 85 | 0 1 2 3 3 0 1 0 }}
 
Optimal tuning (CTE): ~28/27 = 1\20, ~3/2 = 703.107 (~100/99 = 16.893)
 
{{Optimal ET sequence|legend=1| 20cde, 60e, 80, 140 }}
 
Badness (Sintel): 1.273
 
=== 23-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399
 
Mapping: {{mapping| 20 0 -17 -39 -26 74 50 85 27 | 0 1 2 3 3 0 1 0 2 }}
 
Optimal tuning (CTE): ~28/27 = 1\20, ~3/2 = 703.169 (~100/99 = 16.831)
 
{{Optimal ET sequence|legend=1| 20cdei, 60e, 80, 140 }}
 
Badness (Sintel): 1.209
 
=== 29-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23.29
 
Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399, 406/405
 
Mapping: {{mapping| 20 0 -17 -39 -26 74 50 85 27 2 | 0 1 2 3 3 0 1 0 2 3 }}
 
Optimal tuning (CTE): ~29/28 = 1\20, ~3/2 = 703.171 (~100/99 = 16.829)
 
{{Optimal ET sequence|legend=1| 20cdeij, 60e, 80, 140 }}
 
Badness (Sintel): 1.134
 
=== no-31's 37-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23.29.37
 
Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399, 406/405, 481/480
 
Mapping: {{mapping| 20 0 -17 -39 -26 74 50 85 27 2 9 | 0 1 2 3 3 0 1 0 2 3 3 }}
 
Optimal tuning (CTE): ~29/28 = 1\20, ~3/2 = 703.222 (~100/99 = 16.778)
 
{{Optimal ET sequence|legend=1| 20cdeijl, 60el, 80, 140 }}
 
Badness (Sintel): 1.127
 
=== no-31's 41-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23.29.37.41
 
Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399, 451/450, 476/475, 481/480, 2871/2870
 
Mapping: {{mapping| 20 0 -17 -39 -26 74 50 85 27 2 9 12 | 0 1 2 3 3 0 1 0 2 3 3 3 }}
 
Optimal tuning (CTE): ~29/28 = 1\20, ~3/2 = 703.207
 
{{Optimal ET sequence|legend=1| 20cdeijlm, 60el, 80, 140 }}
 
Badness (Sintel): 1.100
 
== Squarschmidt ==
A generator for the squarschimidt temperament is the fourth root of [[5/2]], (5/2)<sup>1/4</sup>, tuned around 396.6 cents. The squarschimidt temperament can be described as 118&amp;239 temperament, tempering out the hemimage comma and quasiorwellisma, 29360128/29296875 in the 7-limit. In the 11-limit, 118&amp;239 tempers out 3025/3024, 5632/5625, and 12005/11979, and the generator represents ~44/35.
 
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| 61 4 -29 }}
 
{{Mapping|legend=1| 1 -8 1 | 0 29 4 }}
 
: mapping generators: ~2, ~98304/78125
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~98304/78125 = 396.621
 
{{Optimal ET sequence|legend=1| 118, 593, 711, 829, 947 }}
 
[[Badness]]: 0.218314
 
=== 7-limit ===
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 10976/10935, 29360128/29296875
 
{{Mapping|legend=1| 1 -8 1 -20 | 0 29 4 69 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1125/896 = 396.643
 
{{Optimal ET sequence|legend=1| 118, 239, 357, 596, 1549bd }}
 
[[Badness]]: 0.132821
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 5632/5625, 10976/10935
 
Mapping: {{mapping| 1 -8 1 -20 -21 | 0 29 4 69 74 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~44/35 = 396.644
 
{{Optimal ET sequence|legend=1| 118, 239, 357, 596 }}
 
Badness: 0.038186
 
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Hemimage temperaments| ]] <!-- main article -->
[[Category:Hemimage| ]] <!-- key article -->
[[Category:Rank 2]]

Latest revision as of 00:29, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

This is a collection of rank-2 temperaments tempering out the hemimage comma (monzo[5 -7 -1 3, ratio: 10976/10935). These include chromat, degrees, bicommatic, bisupermajor, and squarschmidt, considered below, as well as the following discussed elsewhere:

Chromat

The chromat temperament has a period of 1/3 octave and tempers out the hemimage (10976/10935) and the triwellisma (235298/234375). It is also described as an amity extension with third-octave period.

Subgroup: 2.3.5.7

Comma list: 10976/10935, 235298/234375

Mapping[3 4 5 6], 0 5 13 16]]

mapping generators: ~63/50, ~28/27

Optimal tuning (POTE): ~63/50 = 1\3, ~28/27 = 60.528

Optimal ET sequence39d, 60, 99, 258, 357, 456

Badness: 0.057499

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 4375/4356, 10976/10935

Mapping: [3 4 5 6 6], 0 5 13 16 29]]

Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.430

Optimal ET sequence60e, 99e, 159, 258, 417d

Badness: 0.050379

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 625/624, 10976/10935

Mapping: [3 4 5 6 6 4], 0 5 13 16 29 47]]

Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.428

Optimal ET sequence99ef, 159, 258, 417d

Badness: 0.046006

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 375/374, 441/440, 595/594, 3773/3757

Mapping: [3 4 5 6 6 4 10], 0 5 13 16 29 47 15]]

Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.438

Optimal ET sequence99ef, 159, 258, 417dg

Badness: 0.031678

Catachrome

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 441/440, 1001/1000, 10976/10935

Mapping: [3 4 5 6 6 12], 0 5 13 16 29 -6]]

Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.378

Optimal ET sequence60e, 99e, 159

Badness: 0.043844

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 273/272, 325/324, 375/374, 441/440, 4928/4913

Mapping: [3 4 5 6 6 12 10], 0 5 13 16 29 -6 15]]

Optimal tuning (POTE): ~44/35 = 1\3, ~28/27 = 60.377

Optimal ET sequence60e, 99e, 159

Badness: 0.030218

Chromic

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 729/728, 1875/1859

Mapping: [3 4 5 6 6 9], 0 5 13 16 29 14]]

Optimal tuning (POTE): ~44/35 = 1\3, ~27/26 = 60.456

Optimal ET sequence60e, 99ef, 159f, 258ff

Badness: 0.049857

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 170/169, 196/195, 352/351, 375/374, 595/594

Mapping: [3 4 5 6 6 9 10], 0 5 13 16 29 14 15]]

Optimal tuning (POTE): ~63/50 = 1\3, ~27/26 = 60.459

Optimal ET sequence60e, 99ef, 159f, 258ff

Badness: 0.031043

Hemichromat

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 10976/10935, 102487/102400

Mapping: [3 4 5 6 10], 0 10 26 32 5]]

Optimal tuning (CTE): ~63/50 = 1\3, ~55/54 = 30.2511

Optimal ET sequence39d, 120cd, 159, 198, 357, 912b

Badness: 0.067173

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 3025/3024, 10976/10935

Mapping: [3 4 5 6 10 8], 0 10 26 32 5 41]]

Optimal tuning (CTE): ~63/50 = 1\3, ~55/54 = 30.2527

Optimal ET sequence39df, 120cdff, 159, 198, 357, 912b

Badness: 0.033420

Bisupermajor

Subgroup: 2.3.5.7

Comma list: 10976/10935, 65625/65536

Mapping[2 1 6 1], 0 8 -5 17]]

mapping generators: ~1225/864, ~192/175

Optimal tuning (POTE): ~1225/864 = 1\2, ~192/175 = 162.806

Optimal ET sequence22, 74d, 96d, 118, 140, 258, 398, 656d

Badness: 0.065492

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 3388/3375, 9801/9800

Mapping: [2 1 6 1 8], 0 8 -5 17 -4]]

Optimal tuning (POTE): ~99/70, ~11/10 = 162.773

Optimal ET sequence22, 74d, 96d, 118, 258e, 376de

Badness: 0.032080

Bicommatic

Used to be known simply as the commatic temperament, the bicommatic temperament has a period of half octave and a generator of 20.4 cents, a small interval ("commatic") which represents 81/80, 99/98, and 100/99 all tempered together.

Subgroup: 2.3.5.7

Comma list: 10976/10935, 50421/50000

Mapping[2 3 4 5], 0 5 19 18]]

mapping generators: ~567/400, ~81/80

Optimal tuning (POTE): ~567/400 = 1\2, ~81/80 = 20.377

Optimal ET sequence58, 118, 294, 412d, 530d

Badness: 0.084317

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3388/3375, 8019/8000

Mapping: [2 3 4 5 6], 0 5 19 18 27]]

Optimal tuning (POTE): ~99/70 = 1\2, ~81/80 = 20.390

Optimal ET sequence58, 118, 294, 412d

Badness: 0.030461

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 729/728, 1001/1000

Mapping: [2 3 4 5 6 7], 0 5 19 18 27 12]]

Optimal tuning (POTE): ~99/70 = 1\2, ~66/65 = 20.427

Optimal ET sequence58, 118, 176f

Badness: 0.026336

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 170/169, 196/195, 289/288, 352/351, 561/560

Mapping: [2 3 4 5 6 7 8], 0 5 19 18 27 12 5]]

Optimal tuning (POTE): ~17/12 = 1\2, ~66/65 = 20.378

Optimal ET sequence58, 118, 294ffg, 412dffgg

Badness: 0.022396

Degrees

Degrees temperament has a period of 1/20 octave and tempers out the hemimage (10976/10935) and the dimcomp (390625/388962). In this temperament, one period equals ~28/27, two equals ~15/14, three equals ~10/9, five equals ~25/21, six equals ~16/13, seven equals ~14/11, nine equals ~15/11, and ten equals ~99/70.

An obvious extension to the 23-limit exists by equating 4\20 = 1\5 with 23/20, 6\20 = 3\10 with 69/56, 7\20 with 23/18, etc. By observing that 1\20 works as 30/29~29/28~28/27, with 29/28 being especially accurate, and by equating 29/22 with 2\5 = 240 ¢, we get a uniquely elegant extension to the 29-limit which tempers out (33/25)/(29/22) = 726/725, S28 = 784/783 and S29 = 841/840. An edo as large as 220 supports it by patent val, though it does not appear in the optimal ET sequence, and 80edo and 140edo are both much more recommendable tunings.

By equating 37/28 with 2\5 and more accurately 85/74 with 1\5 and 44/37 with 1\4 (among many other equivalences) we get an extension to prime 37 agreeing with many (semi)convergents. By equating 60/41~41/28 with 11\20 or equivalently 56/41~41/30 with 9\20 and by equating 44/41 with 1\10 (among many other equivalences) there is a very efficient extension to prime 41.

By looking at the mapping, we observe an 80-note mos scale is ideal, so that 80edo is in some sense both a trivial and maximally efficient tuning of this temperament. We also observe an abundance of JI interpretations of 20edo by combining primes so that all things require 3 generators, yielding: 37:44:54:56:58:60:69:74:82:85. Alternatively, combining primes so that all things require 2 generators yields 36:40:46:51 which except for intervals of 51 is contained implicitly in the above. The ratios therein should thus be instructive for how the structure of 20edo relates to its representation of JI in this temperament. Note that prime 47 can be added but only really makes sense in rooted form in 140edo.

Subgroup: 2.3.5.7

Comma list: 10976/10935, 390625/388962

Mapping[20 0 -17 -39], 0 1 2 3]]

mapping generators: ~28/27, ~3

Optimal tuning (POTE): ~28/27 = 1\20, ~3/2 = 703.015 (~126/125 = 16.985)

Optimal ET sequence20cd, 60, 80, 140, 640b, 780b

Badness: 0.106471

Badness (Sintel): 2.694

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1331/1323, 1375/1372, 2200/2187

Mapping: [20 0 -17 -39 -26], 0 1 2 3 3]]

Optimal tuning (POTE): ~28/27 = 1\20, ~3/2 = 703.231 (~100/99 = 16.769)

Optimal ET sequence20cd, 60e, 80, 140, 360

Badness: 0.046770

Badness (Sintel): 1.546

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 1001/1000, 1331/1323

Mapping: [20 0 -17 -39 -26 74], 0 1 2 3 3 0]]

Optimal tuning (POTE): ~28/27 = 1\20, ~3/2 = 703.080 (~100/99 = 16.920)

Optimal ET sequence20cde, 60e, 80, 140

Badness: 0.032718

Badness (Sintel): 1.352

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 289/288, 325/324, 352/351, 561/560, 1001/1000

Mapping: [20 0 -17 -39 -26 74 50], 0 1 2 3 3 0 1]]

Optimal tuning (CTE): ~28/27 = 1\20, ~3/2 = 703.107 (~100/99 = 16.893)

Optimal ET sequence20cde, 60e, 80, 140

Badness (Sintel): 1.171

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 286/285, 289/288, 325/324, 352/351, 400/399, 476/475

Mapping: [20 0 -17 -39 -26 74 50 85], 0 1 2 3 3 0 1 0]]

Optimal tuning (CTE): ~28/27 = 1\20, ~3/2 = 703.107 (~100/99 = 16.893)

Optimal ET sequence20cde, 60e, 80, 140

Badness (Sintel): 1.273

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399

Mapping: [20 0 -17 -39 -26 74 50 85 27], 0 1 2 3 3 0 1 0 2]]

Optimal tuning (CTE): ~28/27 = 1\20, ~3/2 = 703.169 (~100/99 = 16.831)

Optimal ET sequence20cdei, 60e, 80, 140

Badness (Sintel): 1.209

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399, 406/405

Mapping: [20 0 -17 -39 -26 74 50 85 27 2], 0 1 2 3 3 0 1 0 2 3]]

Optimal tuning (CTE): ~29/28 = 1\20, ~3/2 = 703.171 (~100/99 = 16.829)

Optimal ET sequence20cdeij, 60e, 80, 140

Badness (Sintel): 1.134

no-31's 37-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.37

Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399, 406/405, 481/480

Mapping: [20 0 -17 -39 -26 74 50 85 27 2 9], 0 1 2 3 3 0 1 0 2 3 3]]

Optimal tuning (CTE): ~29/28 = 1\20, ~3/2 = 703.222 (~100/99 = 16.778)

Optimal ET sequence20cdeijl, 60el, 80, 140

Badness (Sintel): 1.127

no-31's 41-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.37.41

Comma list: 253/252, 286/285, 289/288, 325/324, 352/351, 391/390, 400/399, 451/450, 476/475, 481/480, 2871/2870

Mapping: [20 0 -17 -39 -26 74 50 85 27 2 9 12], 0 1 2 3 3 0 1 0 2 3 3 3]]

Optimal tuning (CTE): ~29/28 = 1\20, ~3/2 = 703.207

Optimal ET sequence20cdeijlm, 60el, 80, 140

Badness (Sintel): 1.100

Squarschmidt

A generator for the squarschimidt temperament is the fourth root of 5/2, (5/2)1/4, tuned around 396.6 cents. The squarschimidt temperament can be described as 118&239 temperament, tempering out the hemimage comma and quasiorwellisma, 29360128/29296875 in the 7-limit. In the 11-limit, 118&239 tempers out 3025/3024, 5632/5625, and 12005/11979, and the generator represents ~44/35.

Subgroup: 2.3.5

Comma list: [61 4 -29

Mapping[1 -8 1], 0 29 4]]

mapping generators: ~2, ~98304/78125

Optimal tuning (POTE): ~2 = 1\1, ~98304/78125 = 396.621

Optimal ET sequence118, 593, 711, 829, 947

Badness: 0.218314

7-limit

Subgroup: 2.3.5.7

Comma list: 10976/10935, 29360128/29296875

Mapping[1 -8 1 -20], 0 29 4 69]]

Optimal tuning (POTE): ~2 = 1\1, ~1125/896 = 396.643

Optimal ET sequence118, 239, 357, 596, 1549bd

Badness: 0.132821

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 5632/5625, 10976/10935

Mapping: [1 -8 1 -20 -21], 0 29 4 69 74]]

Optimal tuning (POTE): ~2 = 1\1, ~44/35 = 396.644

Optimal ET sequence118, 239, 357, 596

Badness: 0.038186