947edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 946edo 947edo 948edo →
Prime factorization 947 (prime)
Step size 1.26716 ¢ 
Fifth 554\947 (702.006 ¢)
Semitones (A1:m2) 90:71 (114 ¢ : 89.97 ¢)
Consistency limit 9
Distinct consistency limit 9

947 equal divisions of the octave (abbreviated 947edo or 947ed2), also called 947-tone equal temperament (947tet) or 947 equal temperament (947et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 947 equal parts of about 1.27 ¢ each. Each step represents a frequency ratio of 21/947, or the 947th root of 2.

Theory

947edo is consistent to the 9-odd-limit, tempering out 3025/3024, 131072/130977, 2460375/2458624 and 766656/765625 in the 11-limit. It is strong in the 2.3.5.11.17.23 subgroup, tempering out 3520/3519, 557056/556875, 30613/30600, 79488/79475 and 3680721/3680000. Using the 2.3.5.17.19.43 subgroup, it tempers out 29241/29240. It supports squarschmidt.

Prime harmonics

Approximation of prime harmonics in 947edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.051 +0.170 +0.551 -0.104 -0.401 +0.219 +0.269 +0.237 +0.623 +0.477
Relative (%) +0.0 +4.1 +13.4 +43.5 -8.2 -31.6 +17.3 +21.3 +18.7 +49.2 +37.6
Steps
(reduced)
947
(0)
1501
(554)
2199
(305)
2659
(765)
3276
(435)
3504
(663)
3871
(83)
4023
(235)
4284
(496)
4601
(813)
4692
(904)

Subsets and supersets

947edo is the 161st prime edo. 1894edo, which doubles it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [1501 -947 [947 1501]] −0.0162 0.0162 1.28
2.3.5 [-16 35 -17, [77 -31 -12 [947 1501 2199]] −0.0352 0.0299 2.36
2.3.5.7 2460375/2458624, 78125000/78121827, 2579890176/2573571875 [947 1501 2199 2659]] −0.0755 0.0744 5.87
2.3.5.7.11 3025/3024, 131072/130977, 2460375/2458624, 766656/765625 [947 1501 2199 2659 3276]] −0.0544 0.0788 6.22

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 144\947 182.471 10/9 Minortone
1 204\947 258.501 [-32 13 5 Lafa
1 313\947 396.621 98304/78125 Squarschmidt

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium